Wednesday, 23 April 2025

Energy Distance Theory Note 4 Finsler Manifold and Distance

  

Energy Distance Theory

 

Note 4

Finsler Manifold and Distance

 

TANAKA Akio

 

1

Banach space     E

Ck manifold       M

Point of M     p

Banach space     TxM

Norm of TxM     ||  ||x

Finsler metric is defined by the next.

(i) Topology by ||  ||is equal to topology by norm of Banach space.

(ii) Tangent vector bundle     T (M)

Point     pM

Coordinate neighborhood of p     (Uαα),  α UαE

Ψα : Uα×→ π-1(UαT (M)

||| v |||x : = ||Ψα (xv)||xUα , vE

> 0

1/C ||| v ||| ||| v |||x C ||| v |||,  xUα , vE

2

Banach manifold M that has Finsler metric     Finsler manifold M

Longitude of M     L (σ) : = ∫ba ||σ’(t)||dt

p, qM

Distance    ρ ( pq ) : = inf { L (σ) }

Distance space     ( M, ρ )

When ( Mρ ) is complete distance space, Finsler manifold is called complete.

3

Finsler Ck manifold     M

Cfunction over M     M  R

Condition (C) is defined by the next.

(i) Subset of M     S

is boundary over S.

infS ||df || = 0

Closure of S     S-

df = 0 at point p of S- 

4

Complete Finsler C2 manifold     M 

Cclass function     M → satisfies condition ( C ).

Theorem

Connected component of M     M0

When f is boundary from below, f has minimum value at M0.

5

1 > m/p , m = dim M

Banach space     L1,p MRN )

C manifold     L1,p MN )

Distance of L1,p MRN )     ρ0

ρu, v ) = ||  v ||1,u, v ∈ L1,p MRN )

Proposition

Finsler manifold (L1,p MN ) , ||  ||1,p ) is complete.

 

[Note]

Word is expressed by closed manifold in Banach space.

Distance is expressed by Finsler metric.

[References]

Distance Theory / Tokyo May 4, 2008

Reversion Theory / Tokyo September 27, 2008

 

To be continued

Tokyo November 7, 2008

Sekinan Research Field of Language

www.sekinan.org

 

Postscript
[Reference November 30, 2008]

Distance of Word / November 30. 2008 / Sekinan.wiki.zoho.com

No comments:

Post a Comment