Saturday, 26 April 2025

Linguistic Premise Premise of Algebraic Linguistics 2-1

  

Linguistic Premise

 

 Premise of Algebraic Linguistics 2-1

 

    TANAKA Akio

 

1 <ideal>

Commutative ring     A

Subset     I  A

(1) x      x-y  I

(2) x  I    L      xy yx  I

I is ideal.

Trivial ideal    = ( 0 )  or  A

 

2 <zero divisor>

Commutative ring      A

x     A   xy = 0

x is zero divisor.

 

3 <integral domain>

Commutative ring     A

A has not zero divisor, except zero element. Zero element is unit of addition.

A is integral domain.

 

4 <field>

Commutative ring     A

A’s element is invertible element , except zero element.

A is field.

Field is integral domain.

 

4* <proposition on field>

Ring is field.      A’s ideal is only ( 0 ) or A.

 

5 <principal ideal>

Ring A

 A

a ) = { xa | x  A }

a ) is principal ideal.

 

6 <principal ideal domain>

Integral domain     A

All the ideals of are principal domains.

A is principal ideal domain, abbreviated to PID.

 

7 <Euclidean domain>

Integral domain     A

Arbitrary element      A

N ( a )  Z

Given conditions

(1) N ( a )  0 and N ( ) = 0   ⇔  a = 0

(2)  ab  A  ( b  0 )    a = qb +   ( N (  N ( b ) )

A is Euclidean domain.

 

7*<Proposition of Euclidean domain>

Ideal of Euclidean domain is principal domain, i.e. Euclid domain is PID.

 

8 <homomorphism>

Ring     AB

Map     φA  B

ab  A

φa+b ) = φa ) + ( b )

φab ) = φ)φb )

φ( 1 ) = 1

Map φis homomorphism.

 

9 <isomorphism>

On above 8 <homomorphism>,

Map φis bijection.

Map φis isomorphism.

 

10 <kernel and image>

Homomorphism of ring   φ : A  B

Ker ( φ) = { a  φ) = 0 }

Im ( φ) = { φ( a ) | a  A

Ker ( φ) is kernel. Ker ( φ) is A’s ideal.

Im ( φ) is image. Im ( φ) is B’s subring.

 

11 <quotient ring>

(1)

Ring A’s ideal     I

a  A

Quotient class     a + I := { a+x | x  I }

(2)

Set of quotient class     A/:= { a+I | a  A }

(3)

Set A/I

Given definition

Addition   ( a + I ) + ( b + ) = ( a + b ) + I

Product   ( a + I ) ( b + ) = ab + I

Ring A/I is quotient ring of A by I.

 

11 <canonical surjection>

Ring    A

Ring A’s ideal     I

a  A

πa ) = a + I  

 i.e.  

Homomorphism map    π : A  A/I

The map is canonical surjection.

 

12 <isomorphism theorem>

Ring     A

Ring A’s ideal     I

Canonical surjection of quotient ring A/    π : A  A/I

Homomorphism φA  B

Homomorphism φ= γ o π    γ : A/I → B    Ker φ  I

 

12 <prime ideal and maximum ideal>

Ring     A

Ideal of ring A    I

A/I is integral domain.     I is prime ideal.

A/I is field.      I is maximum ideal.

 

 

Tokyo September 20, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment