Saturday, 26 April 2025

Linguistic Premise Premise of Algebraic Linguistics 2-3

 Linguistic Premise

 

 Premise of Algebraic Linguistics 2-3

 

    TANAKA Akio

 

25 <principal polynomial>

Commutative ring     R

Elements of R     a0a1, …, an

Variant    x

n-dimension polynomial over (with coefficient)     a0xn + a1xn-1 + … + an     degree( deg ) = n

Principal polynomial     Polynomial with maximum coefficient is 1.

Polynomial     f

Principal polynomial     g

f = qg + r    deg < deg g

 

26 <minimal polynomial>

Extension field     K/k

K’ element αis algebraic over k .    polynomial   0   k [ x ]     α ) = 0

What k-coefficient irreducible polynomial that has root α is minimal polynomial.

 

27 <separable extension>

Extension field     K/k

Arbitrary     α  K

Root of minimal polynomial over is separable.      K/is separable extension.

 

28 <intermediate field>

Finite extension field     K/k

What K/k is principal expansion is equivalent to what K/k ‘s intermediate field is finite.

[Proof outline]

K/k is principal extension.    (α)

α minimal polynomial over     X )

Intermediate field of K/k      L

K = (α)

α irreducible polynomial over L     g ( X )  L ( X )    L ( X )  is divided by f ( X ).

Expansion dimension [ K : L ] = deg g ( X )

Field that adds all the X ) ‘s coefficient to k     L’  L   g ) is irreducible at L’ ( X ).

[ K : L’ ] = deg g ( X ) = [ K : L ]    L = L

Arbitrary L

Expansion field     f ( X )

Factor    g ( X )

Coefficient of g ( )

The coefficient added to makes L.

f ( ) is finite.

Number of intermediate field is finite.

 

29 <Frobenius map>

Ring     A

p  A

p = 0

Map     F A      F ( ) = a p

F is Frobenius map of ring A.

 

29*

Frobenius map is homomorphism of ring.

[Proof outline]

From binomial theorem binomial coefficient is 0 in ring A.

b ) p = ap bp   ( a b ) q = aq bq

 

30 <perfect field>

Perfect field has only separable fields.

 

31 <Galois extension>

Finite extension field     L/k

Galois extension      L/is normal and separable.

 

Tokyo September 22, 2007

Sekinan Research Field of Language

www.sekinan.org

 

No comments:

Post a Comment