Saturday, 26 April 2025

Linguistic Premise Premise of Algebraic Linguistics 1-3

 Linguistic Premise

 

 Premise of Algebraic Linguistics 1-3

 

    TANAKA Akio

 

15

Definition of <presheaf>

Topological space     X

Arbitrary opened set     UV    U V

Commutative group     F  U )

Homomorphism     τUV :  V )   ( U )

Given conditions

(1)

F  ( 0 ) = { 0 }

(2)

τUV  = id    (Identity map)

(3)

U  V  W     τUW  =τUV oτVV

Presheaf of commutative ring on X     { F ( U ), τUV }

 

16

Definition of <sheaf>

Presheaf F, G  on X

Homomorphism     ψ :  G

Given conditions

(1)

Arbitrary opened set     U

Homomorphism     φ ( U ) : F ( U )  G ( U )

(2)

Opened sets     V

Below makes commutative diagram.

F ( V ) , G ( V ), F ( U ) , G ( U )

φ ( V ), φ.( U )

τUV,

(3)

F  U )  s

Open covering U

U i }∈ I r UiU = 0   ∈    s = 0

(4)

Open covering U

U i }∈ I

F ( U ) ∋ si     ∈ I

rUi Uj Ui (si ) = r Ui Uj (sj) (i, j  )    rUiU (s) = si ( i  )

Presheaf is sheaf.

 

Tokyo September 17, 2007

Sekinan Research Field of Language

www.sekinan.org

 

No comments:

Post a Comment