Saturday, 26 April 2025

Linguistic Premise Premise of Algebraic Linguistics

  

Linguistic Premise

 

 Premise of Algebraic Linguistics

 

    TANAKA Akio

 

1

Definition of <group>

Set     G   G {0}

Operation     G × G  G ; ( a, b ) → ab    ab is called <product>.

Conditions of operation

(1) <associative law>     arbitrary abc  G     (ab)a(bc)    

(2)<identity element>     e  G     arbitrary ∈ G     ae = ea = a     also expressed by 1G

(3)<inverse element>     e  G     arbitrary ∈ G     ab = ba = e      also expressed by a-1

Another additional condition of operation

(4)<commutative law>     arbitrary ab  G     ab ba                    G is called <Abelian group>.

When productive operation is done by <addition>, Abelian group is called <additive group> or <module>.

 

2

Definition of <subgroup>

Group     G

Subset H  G

Conditions of H

(1)a, b ∈  ab  H

(2)∈  a-1 ∈ H

Definition of <normal subgroup>

Arbitrary h  H     g  H

g-1 hg  H

H     normal subgroup

 

3Definition of <finite group>

Group     G

has finite elements.

 

G     finite group

Definition of <order>

G’s finite elements

 

4

Definition of <homomorphism of group>

Map     f : G → H

Arbitrary a G

f (ab) = (af (b)

 

5

Definition of, isomorphism of group>

f is bijective, i.e. is injective ( map   B   a, a’  A     f a ) = a’  a = a’ ) and is surjective (map   B    Image ( ) = ).

Expression is G ≅ H

 

6

Definition of <ring>

Additive group     A

Product operation of A     AA  A ; ( x, y  xy

(1) <associative law>     (xy)z = x(yz)

(2) <distributive law>    (x + y)z = xz + yz    z(x + y) = zx + zy

(3) <identity element>     x  A  xe = ex = x

Definition of <commutative ring>

Another additional condition of operation

(4)<commutative law>    xy yx

 

Tokyo September 11, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment