Saturday, 26 April 2025

Language and Manifold Note 1 Algebraic Cycle

  

Language and Manifold

 

Note 1

Algebraic Cycle

 

 

TANAKA Akio

 

1 <Algebraic cycle>

Field     k

Polynomial    x ) = x ]

Algebraic closure k     Polynomial that has one root at least.    

n-dimensional affine space An = kn

n-dimensional complex affine space     Anc = { ( z1, …, zn ) | zi  C }

Finite polynomials over coordinates z1, …, zn     f1 ( z1, …, zn ) , …, fz1, …, zn )

Affine algebraic manifold     f1, …, fm ) = { ( z1, …, zn  Af1 ( z1, …, zn ) = …= fz1, …, zn ) = 0 }

n-dimensional projective space Pn     Continued ratio ( Z1 : … : Zn ) (( Z1 : … : Zn ( 0, …, 0 )

Homogeneous polynomial    F1 Z0 : … : Zn ), …, Fm Z0 : … : Zm )

Projective manifold     F1, …, Fm ) = { ( Z0, …, Zn  PF0 ( Z0, …, Zn ) = …= FmnZ0, …, Zn ) = 0 }

Nonsingular connected projective manifold X     F0, …, Fm )

Homogeneous polynomial    G1 Z0,… : Zn ), …, Gk Z0, … : Z n)

W = F1, …, FmG1, …, Gk )

Algebraic cycle  ∑iaiWi     (Wi is irreducible submanifoldaiZ )

 

[References]

<Projective space>

Algebraic Linguistics / Linguistic Note / 7 Projective Space / Tokyo July 26, 2007

 

Tokyo November 19, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment