Saturday, 26 April 2025

Linguistic Premise Premise of Algebraic Linguistics 2-2

  

Linguistic Premise

 

 Premise of Algebraic Linguistics 2-2

 

    TANAKA Akio

 

13 <extension field>

Field     K    K  k

Extension field      K

Subfield    k

Extension field is also expressed by K/k.

 

14 <extension dimension>

Extension field     K/k

Extension dimension     K dimension over k    expressed by [ K : k ]

n-dimension extension     [ K : k ] = n

 

15 <principal extension>

Field extension     K/k

α  K

Principal extension of k     Minimum field containing k and α     Expressed by k (α)

 

16 <transcendental and algebraic>

Field extension     K/k

Polynomial ring      k [ X ]

Homomorphism     φφα : k [ X ]  K φf ( X ) ) = f (α)

Ker (φ) = ( 0 )      α is transcendental over k.

Ker (φ ( 0 )    α is algebraic over k.

 

17 <irreducible polynomial and principal polynomial>

Ker (φ) = ( f ( X ) ) uniquely determines principal polynomial that is expressed by Irrk ( α ).

 

18 <algebraic extension>

Arbitrary element of is algebraic over kK/k is algebraic extension.

 

19 <chain rule of extension dimension>

Finite extension      K  L

] = [ L : ] [ K : k ]

 

20 <algebraically closed field and algebraic closure>

Field     Ω

Arbitrary not constant f  Ω   f ( α ) = 0 and αΩ

Ω is algebraic closure.

 

21 <root of f ( X )>

Extension field     K/k

Set of K’s k-isomorphism     Aut)

k ( α)

α’s irreducible polynomial     f ( X )

σ ∈ Aut) is determined by σ ( α ) that is root of f ( ).

| Aut) | = # {  K  | f ( ) = 0 }

 

22 <normal extension>

Finite extension field     K/k

All the roots of K’s irreducible polynomial against arbitrary element α has roots of K.     K/k is normal extension.

 

23 <splitting field>

Polynomial     f ( X )  k [ X ]

All the roots of ) adjoining to      splitting field over k

 

23*

K/k is normal extension.      K is f ( X )  k [ X ]’s splitting field over k.

 

24 <Galois group>

Splitting field of f  ]

Aut( ) is f’s Galois group. Expression is Gal ( f ).

 

Tokyo September 21, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment