Saturday, 26 April 2025

Linguistic Note 8 Vector Space

 Linguistic Note

 

8

 

Vector Space

 

 

    TANAKA Akio

 

1

Additive group becomes vector space on field K in below condition.

Vector space defines scalar multiplication that is au  V in element of K and element u of V.

In vector space, arbitrary element of K and V has distributive law, associative law and identity element.

 

2

Vector space makes functional space in below condition.

Map from set M to field K       K valued function.

All the sets of K valued function on M      F ( MK )

Definition of addition between two functions f and g      f, g  F ( MK )     ( f + g ) ( u ) = f ( u ) + g ( u )

Definition of scalar multiplication af between element a on K.     ( af ) ( ) = af ( u )

Functional space F ( MK ) becomes vector space.

When set M is M = {1, … , n }, F ( MK ) is numerical vector space.

 

3

K–vector space Vhas linear map φV → W in below condition.

Arbitrary u, v  V and arbitrary a  K have distributive law and associative law.

Kernel of linear map     Ker (φ) = { u  V | φ u ) = 0 }

Image of linear map      Im (φ) = { φ u ) |  u  V  }

 

4

Linear map φ is expressed by matrix.

 

5

When V and W are finitely dimensional vector spaces, dimension of linear map is below.

Dim ( V ) = dim ( Ker ( φ ) + dim ( Im ( φ ) )

 

[Note]

Exact sequence on additive group may be helpful for connection of words.

 

[References]

<On Lineation>

Lineation     Tokyo March 11, 2005

Compendium     Tokyo March 22, 2005

<On connection> 

Language and Spacetime     Generation of Sentence     Tokyo April 13, 2007

Language and Spacetime     Construction of Spacetime     Tokyo April 29, 2007

 

Tokyo July 27, 2007

Sekinan Research Field of Language

www.sekinan.org

 

No comments:

Post a Comment