Friday, 25 April 2025

Functional Analysis Note 4 Functional

 Functional Analysis

Note 4

Functional 

 

TANAKA Akio

 

1 Linear functional

Real number or complex number     Φ

Linear space over Φ     X

xX

(x)Φ.    

(i) (x1+x2) =(x1)+f (x2)   (x1x2X)

(ii) f (ax) =af (x)  (xXaΦ)

 

2 Hyperspace

Linear space     X

Linear functional defined by X     f

N= {xX ; f (x) = 0 )}

x0  Nf

Arbitrary xX

x = z + ax0  ( z NaΦ )

Hypersurface is defined by the next.

N x0 = { z + x0 ;  zN}

 

3 Distance of hypersurface

Normed space     X

Linear functional defined at X     f

Bounded linear subspace     N 

N X

xX

(x0 )1

Hypersurface     M f N x( = { xX ; f (x) = 1 }

M f 0

Distance between origin 0 and M f     d

d = inf {||x|| ; xM f } > 0

 

4 Bounded linear functional and distance

Bounded linear functional defined at normed space     f

f (x 0

M f = { xX ; f (x) = 1 }

Distance between origin 0 and M f     d

|| || = 1/d

 

5 Closed linear subspace

Normed space     X

Closed linear subspace of X     M

Linear subspace of X and having finite dimension     V

M + V = { Z + v ; zM, v}

 

Tokyo May 23, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment