Saturday, 26 April 2025

Linguistic Note 14 Zariski Topology

 Linguistic Note

 

14

 

Zariski Topology

 

 

     TANAKA Akio

 

1

Algebraically closed field     k

Positive integer     n

n-variable polynomial     f ( T1, …..,Tn )  k [ T1,…..,Tn ]

Ideal generated by equation system  f1,….., fs      I = ( f1, ….., fs )  k [ T1,     ,Tn ]

Residue ring     A = k [ T1,     ,Tn ] / I

All the prime ideals of A     Spec A

Affine algebraic scheme     X = ( Spec AA )

Dimension of X      dim X

0 ≦ dim ≦ n

I = { f1,….., f} = 0

A = k [ T1,     ,Tn ]

Affine algebraic scheme     An = ( Spec k [ T1,     ,Tn ], T1,     ,Tn ] )

n- dimension affine space     An

Quotient field of integral domain A     Q

Transcendence degree of Q(A)     dim X

Affine algebraic variant     X

2

Affine algebraic scheme     X = ( Spec AA )     Y = ( Spec BB)

Isomorphism of k-algebra     φ : B → A

Prime ideal     P  Spec A

Prime ideal of B     φ’ = φ-1 ( P )

Regular map from X to Y     Φ = ( φ’, φ )

Line on k     A1 = ( Spec k [T1], k [T2] )

Regular function on X     Regular map from X to A1

3

Affine algebraic scheme     X = ( Spec AA )

Element of Spec A     xy, …

Prime ideal of A     PxPy,…

u  A

Subset of Spec A     u )

Topology of Spec A     Zariski topology

Topological space that has arbitrary open subset gives quasi-compact.     Noetherian space

 

[Note]

Affine algebraic scheme or Zariski topology may be useful to describe language on the whole or symbolic world expressed by language.

 

Tokyo August 24, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment