Thursday 30 April 2015

Clifford Algebra Conjecture 1 Meaning Product



Conjecture 1

Meaning Product



1 Word has product of meaning.
2 Word becomes group by the product.
3 Group becomes spinor group by topological homeomorphism from 3-dimensional sphere.
4 Meaning is topologically on the sphere.
5 Representation is done by Clifford algebra.
5 Decomposition of representation is plus and minus representation.
6 Spherical word and plus-minus representation are notionally related with the early papers of <Quantum Theory for Language>, especially with Mirror TheoryMirror Language and Actual Language and Imaginary Language.

[Basis]
<On inner product of Clifford algebra and wedge product of exterior algebra>
[References]

Clifford Algebra Creation Operator and Annihilation Operator


Note 7
Creation Operator and Annihilation Operator


1
Manifold     M
Tangent vector bundle of M     TM
Vector field over M = Cross section of TM     X  Γ(MTM )
Differential map      M1 → M2     TM TM2     * (V T(x)M2   V  TxM1
Frame bundle of TM     GL (TM)
dim n     GL (n)
Representation space of arbitrary representation ρ in GL (n)     E
Tensor bundle of M = Associated bundle      ε GL (TM) ×ρ E
Exterior algebra    Λ(Rn)*
Exterior differential bundle     ΛT*M GL (TM) ×ρ Λ(Rn)*
2
Space of cross section    Γ(M, ΛT*M )
Space of differential form    Ω(M)
Ωi(M) = Γ(M, ΛiT*M )
Exterior differential     d : Ω(MΩ+1 (M)
3
Vector space     V
 V
exterior product     v : Λ→ ΛV
Vector field     X
Exterior operator     v ( X ) : Ω(MΩ+1 (M)
4
Vector space     V
Dual vector space of V     V*
α ∈ V*
Construction     ι(α) : Λ→ ΛV
Vector field     X
Construction operator    ι(X) : Ω(MΩ-1 (M)
5
Complex vector space     V R C
Complex subspace of V R C     P
V R C  P  
Inner product     Q
w  P
ww ) = 0
P is Polarization of V R .
6
Real vector space    V
Linear automorphism of V     J
J= -1
J     Complex structure of V
7
P’s exterior algebra    ΛP
Spinor space    S =ΛP
Spinor module ( Complex Clifford module )     S = S+  S-
Complex Clifford module     R C
R C = End ( S ) = S+  S-
8
From upper 2, 3 and 5, elements of P, called creation operator, create a particle and elements of , called annihilation operator, annihilate a particle.

[Note]
Creation operator and annihilation operator are corresponded with the next past work.



Clifford Algebra Periodicity


Note 6
Periodicity


n-dimensional Euclid space with canonical inner product     Rn
Clifford algebra corresponded with Rn     (Rn)
Complexification of (Rn)     (Rn C
Arbitrary integer     > 0
(Rn+2R   C (Rn+2End ( C)   
(R2nR C    End ( C2n )
(R2n+1R ≃ End ( C2n  End ( C2n )

[Note]
Periodicity in Clifford algebra may be corresponded with periodicity of meaning in word of natural language.
At early work of <Quantum Theory for Language>, especially refer to the next papers’ comments of meaning factors in ancient Chinese inscriptionson bone and tortoiseshell <Jiaguwen>.
On inscription < geng>
On inscription <  kun>

Clifford Algebra TOMONAGA’s Super Multi-time Theory



Note 5
TOMONAGA’s Super Multi-time Theory


1 <Schrödinger equation>
State vector     ψ
Time     t
Electromagnetic field     A
Hamiltonian     H
iψ(t) = (t),   ψ(0) = ψ     (1)
2 <Dirac’s paraphrase of Schrödinger equation >
Coordinate     x
Momentum     p
Electron     N in number
Electromagnetic field     A
H-em     Electromagnetic field Hamiltonian
H-em Hn ( xnpn(xn) ) +   ] ψ(t) = 0     (2)
3 <Representation by unitary transformation>
u(t) = exp{ H-em}
(xnt) u(t) A (xn) u(t)-1
Φ(t) = u(t) ψ(t)
Hn ( xnpn(xnt) ) +   ] Φ(t) = 0     (3)
4 < Dirac’s multi-time theory- Time variant in number >
[Hn ( xnpn(xntn) ) +   ] Φx1, t1; … ; xN, t) = 0     (4)
5 <Tomonaga’s representation of electromagnetic field>
Unitary transformation
U (t) = exp {  (H1 + H2 ) t }    
Schrödinger equation
[HH2 + H12  ] ψ(t) = 0    
Independent time variant txyz at each point in space 
H12 (xyztxyz ) +   ] Φ(t) = 0     (5)
6 < Tomonaga’s super multi-time theory>
Super curved surface     C
Point on C     P
4-dimensional volume’s transformation of     CP
Infinite small variation of state vectorΦ[C] = Φ[Txyz]      Φ[C]
H12 ( P ) +   ] Φ[C] = 0     (6)

[References]
<Past work on multi-time themes>
<For more details>


Clifford Algebra Dirac Operator From 3-dimensional Spinor Group to 4-dimensional Spin Manifold



Note 4
Dirac Operator
From 3-dimensional Spinor Group to 4-dimensional Spin Manifold


1 <Clifford algebra>
has inner product.
Orthonormal basis of the inner product space     e1, …, en
Algebra generated from e1, …, ehas next relations.
eiej = -ejei  (i  )
(e)2 = -1   (i = 1, …, n )       (1)
The algebra is called n-dimensional Clifford algebra, expressed by Cln.
Clhas vector space generated from ei1eik  against i1 < …<ik
≤ k ≤ n. When k = 0, ei1eik = 1.
2 <Dirac operator>
Differential operator defined over open set of n
γ1  +  +γn  
γiγj = -γjγi  (i  )
(γ)2 = -1   (i = 1, …, n )
D becomes Dirac operator.
3 <Representation space>
Clis presentation space of Cln , for  Cln’s vector space generated from ei1eik  against i1 < …<ik
4 <Exterior algebra>
At (1), now relation is changed to (e)2 = 0   (i = 1, …, n )      (2)
New elation is called exterior algebra, abbreviated to ex.
Exterior algebra’s product is expressed by wedge product .
Vector space of exterior algebra is generated from
ei1eik .     (3)
≤ k ≤ n. When k = 0, ei1eik = 1.
Now 0 ≤ k ≤ n. When k = 0, ei1eik = 1.
Vector subspace generated from (3) against fixed k is expressed by k.
5 <Differential form>
Basis of is expressed by dx1, …, dxn.
k valued function on ex is expressed by the next,
α = αi1,...,αk dxi1, …, dxin.    (4)
(4 ) is called k-dimensional differential form.
6 <exterior differentiation operator, associated operator>
All of k-dimensional differential forms is expressed by Ωk .
Next operators are given against Ωk .
Exterior differentiation operator     d : ΩΩk+1
Associated operator     d* : ΩΩk-1
7 <Spinor group>
Rotation group of 3-dimensional Euclid space     SO ( 3 )
SO ( 3 ) is homeomorphic with 3-dimensional sphere Sthat is called spinor group.
n-dimensional spinor group is expressed by Spin ( n ).
Spinor group has two 2-dimensional complex expression S±.
Sis called plus 2-dimensional spinor.                                                   
Sis called minus 2-dimensional spinor.
8 <Spinor representation>
By Sand SS is expressed to the next.
S S-
9 <Riemann manifold>
Euclid space     2l
Dirac operator is expressed to the next by generating element e.
D = er      (5)
When Euclid space is lifted to oriented Riemann manifold, the condition of 2-dimensional Stiefel Whitney class is defined .
The condition is the next.
w2(TM ) = 0
TM is tangent bundle.
w is vector bundle ξ’s base space B’s Zcoefficient’s cohomology group’s element.
w(ξ Hi Z)  i = 0, 1, 2, …
10 <Spin Riemann manifold >
2l-dimensional spin Riemann manifold     M
Dirac operator     D
Spinor field that satisfies Ds = 0 is called harmonic spinor.
Space given by harmonic spinor     H
From S = S+ + S-
Decomposition H = H+  H-
dim H- dim Hbecomes topological invariant.
The invariant is called index D.
11 <Seiberg-Witten equation>
Oriented compact4-dimensional spin manifold     M
Complex linear bundle over M     L
( 1 ) connection of L is fixed.
Plus spinor bundle     S+
Section of S L     
Seiberg-Witten equation is defined by the next.
DA = 0,  FA+ = [ ∅ ∅- ]+      (6)
Here
DA = 0   Dirac equation
FA+ = 2+      
0 +2S+  S+
0   0-dimensional differential form
2+  Self-dual 2-dimensional differential form