Saturday, 26 April 2025

Linguistic Focus 4 Noetherian Normalizing Theorem for Hilbert Zero Point Theorem

 

Linguistic Focus

 

4

 

Noetherian Normalizing Theorem for Hilbert Zero Point Theorem

 

 

             TANAKA Akio

 

< Noetherian Normalizing Theorem >

k is field.

R is finitely generated integral domain over k.

R’s transcendence degree over k is n.

There exist arbitrary elements x1, …, xin R, and becomes integral over k [x1, …, x].

 [Proof]

R is integral over k.

Elements of R exist.     y1, …, ym

R [y1, …, y]

Variable     Y1, …, Ym

Surjective homomorphism     φk [Y1, …, Y [  y1, …, y]     Y  yi

Ker φ = p

From homomorphism theorem*

Isomorphism k [Y1, …, Y] / p  [  y1, …, y]

R is integral domain.

is prime ideal.

From definition of transcendence degree**

m ≥ n

When m = ny1, …, yis algebraically independent.

x1 = y1 , …, xm = ym

When ≻ n , conditions are below.

Subring is in RS is generated by elements m-1 over k. And integral over in R exists.***

 

[Notes]

<Homomorphism theorem*>

Ring     R1R2

Homomorphism of ring     φR R2

φ leads injective homomorphism φ- from quotient ring R/ Ker φ  to R2.

When φ  is surjective, φ- is isomorphism.

<Definition of transcendence degree**>

Number of transcendental basis in field extension K ⊃ k.

Transcendental basis is subset S ⊂ K. S satisfies the next.

(1) S is algebraically independent over k.

(2) K ⊃ k ( ) is algebraic extension.

<Subring is in RS is generated by elements m-1 over k. And integral over in R exists.***>

[Proof]

Transcendental degree in R over k     n

n < m

y1, …, yis not algebraically independent over k.

polynomial (Y1, …, Y∈ k [Y1, …, Y]

(y1, …, y) = 0

Arbitrary natural numbers     r2, …, rm

ZY2 –Y1r2, …, Zm Ym – Y1rm

zy2 –y1r2, …, zm = ym –y1rm

f ( y1z2 + y1r2, …, zm y1rm ) = 0

S = [z2, …, zm ]

Monomial in (y1, …, y)      aY1l1Ymlm

aY1l1Ymlm  = aY1l1 ( ZY1rl1… (Zm Y1 rml1

Maximum dimensional term

aY1l1+r2l2++rmlm

 

 

 

 

 

 

 

Tokyo October 2, 2007

Sekinan Research Field of Language

www.sekinan.org

 

No comments:

Post a Comment