Saturday, 26 April 2025

Linguistic Note 12 Coset

  

Linguistic Note

 

12

 

Coset

 

 

    TANAKA Akio

 

1

Group     G

Subgroup     H

στ  G

Left coset    σH

σH = { σ* ε | ε H }

Left coset decomposition     G =  J τH

Representative of left coset H    τj

Corrected set of left cosets    G/H = {τH | j  J }

Order     |   |

Index     Number of G/H’ s elements     ( G : H ) = | J |

Lagrange Theorem     | G | = ( G : H ) | H |

From here, if | G | is prime number, is cyclic group.

 

2

Group     G

Subgroup     N

N’ condition of normal subgroup

σ G

σ N σ-1 = N

Center of G     Cent ( ) = {σ  τ  Gστ = τ*σ }

 

3

Group G                                                                                                                                                                    

G’s normal subset     N

Cosets’ set    G/N

σ G

Residue class of G/N ‘ condition    

(σ1*N) (σ2*N) = (σ12N

 

4

G1G2     Group

Map     φ G1   G2

στ  G

Group homomorphism for map φ     φ(στ ) = φσ ) * φτ )

Group isomorphism for map φ      φ is bijective. ( φ ( a ) =φ (a’) ⇒ a = a’    and   Image (φ) = G)

G1 and  G2  are isomorphic.      G1   G2 

 

5

Homomorphism   φ G1   G2

Unit of G1        e1

Unit of G2        e2

Kernel of homomorphism φ    Ker (φ) = {σ G | φσ ) = e}

Ker (φ) = {σ G | φσ ) = e}

φ is injective       Ker (φ) = { e1}

 

6

Homomorphism      φ G1   G2

Homomorphism Theorem     G/ Ker (φ)  ≅ Image (φ)

 

[Note]

Natural language probably has only left coset (or right coset), i.e., natural language is non-commutative. Chinese language <wo ai> means <I love>, but <ai wo> means <love me>.

 

[References]

 Notice for Model Simplified Level    Tokyo February 14, 2005

 Positioning of Quantum     Tokyo February 19, 2005

 Model Simplified Level     Tokyo February 5, 2005 

 Model Simplified Level 2     Tokyo February 12, 2005

 

Tokyo August 6, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment