Saturday, 26 April 2025

Linguistic Premise Premise of Algebraic Linguistics 2-4

 Linguistic Premise

 

 Premise of Algebraic Linguistics 2-4

 

    TANAKA Akio

 

32 <automorphism group>

Algebraic system     X

Automorphism     bijectional homomorphism from X to X

All the automorphism has productive composition.      Automorphism group     Expression is Aut ( X )

 

33 <operate>

Ring     R

Automorphism group     Aut ( X )

Homomorphism of group     G  Aut( R )

G operates R.

Homomorphism is surjection.       G separates R faithfully.

 

34 <normal separable extension>

Finite group G operates field L faithfully.

Invariant subfield of L     k = LG := { a  L | σa ) = a ( σ  G )

Normal separable extension ( Galois extension )     [ L : k ] = | G |

 

35 <finite separable normal extension i.e. Galois extension>

Galois extension of L/k      G = Gal ( L/k )

Subfield of G     H

Invariant subfield of H     LH = { a  L | σ ( a ) = a   σ  H }

Intermediate field of L/k     E    

){ σ  G | σ ( a ) = a   a  E }   

 

36 <fundamental theorem of Galois theory>

Extension field is controlled by group theory.

Field of characteristic 0     k

Finite Galois extension     K  k

Intermediate field of K  k      M

Galois group     Gal ( K/k )

Subgroup of Gal ( K/k )     H

Galois correspondence

(1) M φ Gal ( K/M )

(2) H ψ LH

Extension M  k     Gal ( K/M ) is normal subfield of Gal ( K/).

Isomorphism     Gal ( M/k )  Gal ( K/k ) / Gal ( K/M )

 

Tokyo September 22, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment