Saturday, 26 April 2025

Linguistic Note 10 Cohomology Group

  Linguistic Note

 

10

 

Cohomology Group

 

 

    TANAKA Akio

 

Group     G

G-additive group     M

Natural number     n

Gn = { σ1, … , σn | σ G }

Cn = ( GM ) = { φ Gn  M | φ is map as set }

Co = ( GM ) = M

Against Cn = ( GM )

φ ψ ) ( σ ) = φ ( σ ) + φσ )       φ ψ  Cn      σ Cn  

Element of Cn = ( GM )     n- Cochain

Homomorphism      dn Cn  ( GM )   Cn+1 ( GM )    n ≥ 0

 d n+1dn  = 0

Zn  ( GM )  = Ker ( dn )   n ≥ 0

Bn  ( GM )  = Im ( dn-1 )  n ≥ 1

Element of Zn  ( GM ) is n-cosylcle.

Element of Bn  ( G)  is n-coboundary.

Bn  ( GM )   Zn  ( GM )

Cohomology group of M is below.

Hn  ( GM ) = Zn  ( GM ) / Bn  ( GM ) 

H0  ( GM ) = Z0  ( GM )

 

[Note]

Cohomology group may be helpful to the meaning of words and their variations.

 

[References]

Property of Quantum     Tokyo May 21, 2004

Prague Theory     Tokyo October 2, 2004

Prague Theory Summary and Prospect     Tokyo October 9, 2004

Theoretical Summarization and Problem in Future     Tokyo November 28, 2004

Tokyo July 29 2007

Sekinan Research Field of Language

www.sekinan.org

 

No comments:

Post a Comment