Saturday, 26 April 2025

Kac-Moody Lie Algebra Note 1 Kac-Moody Lie Algebra

  

Kac-Moody Lie Algebra

Note 1

Kac-Moody Lie Algebra

 

TANAKA Akio

 

 

1 <Cartan matrix>

Base field     K

Finite index set     I

Square matrix that has elements by integer     = ( aij )i, j  I

Matrix that satisfies the next is called Cartan matrix.

ij  I

(1) aii = 2

(2) aij ≤ 0  ( i j )

(3) aij = 0  aji = 0

2 <Fundamental root data>

Finite dimension vector space     h

Linearly independent subset of h     {hi}iI

Dual space of      h*HomK (hK )

Linearly independent subset of h*     {αi} iI

Φ = {h, {hi}iI, {αi} i}

Cartan matrix A = {αi(hi)} I, jI

Φis called fundamental root data of that is Cartan matrix.

3 <Lie algebra>

Cartan matrix A = {αi(hi)} I, jI

Fundamental root data Φ what A is Cartan matrix     Φ = {h, {hi}iI, {αi} i}

Lie algebra that is generated by {ah}hh {i ,i }iI     (Φ)

(Φ) satisfies the next.

hh’  h   c  K   i, j  I

aah’ ah+h

cah ach

[ahah] = 0

[ahi] = αi(h)i

[ah,i] = -αi(h)i

[i ,i] = ijahi

4 <Kac-Moody Lie algebra>

Subset of (Φ)     {ad(i)1-aij(j), ad(i)1-aij(j)|i,jIi }

Ideal of the subset   r0(Φ

r0(Φ) = r0+(Φ r0-(Φ)

max(Φ) = (Φ)/ r0(Φ)

max(Φ) is Lie algebra by definition.

max(Φ) is called Kac-Moody Lie algebra attended with fundamental root data max(Φ).

 

 

Tokyo February 7, 2008

 

Sekinan Research Field of Language

 

www.sekinan.org

No comments:

Post a Comment