Saturday, 26 April 2025

Linguistic Premise Premise of Algebraic Linguistics 1-2

  

Linguistic Premise

 

 Premise of Algebraic Linguistics 1-2

 

    TANAKA Akio

 

7

Definition of <subring>

Ring     A

Subset     A

Identity element     1A  B

x, y  B  x-y  B  and  xy  B

B is subring.

 

8

Definition of <homomorphism of ring>

Ring     AB

Map    f : A  B

Arbitrary xy  A

y ) = f ( x ) + f ( )  and  f ( xy ) = x ) f ( y )

 

9

Definition of <isomorphism>

f is bijective.

f  : A  B

Expression is A  B

 

10

Definition of <equivalence relation>

Set     X

Direct productive set     X × X = { ( xy ) | x,y  X }

x R  x  y

Satisfied conditions are below.

(1) Reflective law     x ∼ x

(2) Symmetry law    ∼ y  ∼ x

(3) Transitivity law    ∼ y∼ ⇒ ∼ z

Definition of <equivalence class>

x  X

Subset of X    πx ) = { y  X | y  x }

 

11

Definition of <right coset>

Group     G

Subset      G

x  y  x-1y  H

Equivalence class of x  G

Expression is xH.

Definition of <left coset>

x  y  y x-1  H

Expression is Hx.

 

12

Definition of <residue class>

Group    G

Normal subset of G     H

Residue class is xH = Hx

Expression is x mod H

 

13

Definition of <residue group>

Group    G

Normal subset of G     H

Residue class    G / H

Map     π : G  G / H ; x  π )

Definition of G / H

π π ( y ) =π xy )

G / is residue group.

 

14

Definition of <ideal>

Commutative ring    A

Subset    I  A

I is ideal by below conditions.

(1) xy  I  x – y  I

(2) x  Iy  A  xy = yx  I

Tokyo September 12, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment