Friday, 25 April 2025

Functional Analysis Note 2 Equality and Inequality

 Functional Analysis

 

Note 2

 

Equality and Inequality 

 

TANAKA Akio

 

[Parseval’s equality]

Hilbert space    X

Complete orthogonal system of X     S

S = {x1x2, …, xn, …} is separable.

Arbitrary xX

||x||2 = ∑n=1 | (xxn) |2

 

[Bessel’s inequality]

Hilbert space     X

2 elements of X     xy

When (xy) = 0, x and y are called orthogonal each other.

Subset S of X does not contain 0 and arbitrary 2 elements are orthogonal each other, S is called orthogonal system.

When each xX satisfies ||x|| = 1, S is called normal orthogonal system.

Arbitrary xX

n=1 | (xxn) |||x||2

 

[Jensen’s inequality]

Positive number     pq

1p<q<

n=1 |anp <

n=1 |anq <

(∑n=1 |anq)1/(∑n=1 |anp)1/p  (0<pq)

 

[Minkowski’s inequality]

Positive number     p

1p<

n=1 |anp <

n=1 |bnp <

(∑n=1 |a+bnp)1/p (∑n=1 |anp)1/p + (∑n=1 |bnp)1/p

 

[Schwarz’s inequality]

Inner product space     X

2 elements of X     xy

|(xy)|  

 

Tokyo May 15, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment