Saturday, 26 April 2025

Linguistic Note 11 Tensor Product

 Linguistic Note

 

11

 

Tensor Product

 

 

    TANAKA Akio

 

1            

Field     F

Linear space     VW

Additive group     X

Map    f : V × → X

F-bilinear map satisfies below condition.

α1, αV    βW

 α1 + α2β) = f (α1, β ) + f (α2, β )

αV    β1 , β2W

αβ1 + β2) = f (αβ1) + (αβ 2)

αV    βW  λ∈ F

(λαβ) = f (α ,λβ )

 

2

Field     F

Linear space     VW

Additive group     T

F-bilinear map    τ BL ( V ×WT )

F-bilinear map     f  BL (V×W, X )

Additive group’s homomorphism      f T  X

Tensor product of V and W satisfies below condition.

Pair ( Tτ)

f = f ~ . τ

 

3

Tensor product V      ( Tτ)

Tensor product W      (  `τ` )

Additive isomorphism      φ : T  T `

τ` = τ . φ

 

4

Tensor product is expressed by the following briefly.

V  W

 

5

Algebra on field F     AB

Tensor product  B is defined by the following.

xy   B

xy : = ( mA   mB ) ( h ( x   ) )

h : = ( A  B )  ( A  B )  ( A  A ) ( B  B )

mA   m: ( A   A )  (   B )  A   B

 

6

Algebra on field F      A, B, C

 Hom Fal ( AC )

 Hom Fal ( BC )

α   A     β B

(α) g(β) = g (β(α)

h (α  β ) = (αg (β)

 

[Note]

Relationship between bilinear map τ , τ ` and isomorphism φ , namely τ` = τ . φ, may be helpful to word ( τ ) , sentence ( τ` ) and grammar ( φ ).

 

[Reference]

Frame-Quantum Theory     Tokyo March 13, 2005

Frame-Quantum Theory Addendum     Tokyo March 26, 2005

Frame-Quantum Theory map 3     Tokyo Hakuba March 28, 2005

Compendium     Premise for Frame-Quantum Theory     Tokyo March 22 – April 10, 2005

 

Tokyo July 30 2007

Sekinan Research Field of Language

www.sekinan.org


No comments:

Post a Comment