Saturday, 26 April 2025

Linguistic Focus 3 Hilbert Zero Point Theorem

 Linguistic Focus

 

3

 

Hilbert Zero Point Theorem  

 

 

    TANAKA Akio

 

<Hilbert zero point theorem 1>

k is algebraically closed field.

Maximum ideal of polynomial in n variables over k,  k [ X1, …, Xn ], is given by ( X1-a1, …, Xn – an ) being consisted from kn’s arbitrary elements ( a1, …, an ).

[Proof]

Maximum ideal k [ X1, …, Xn ]     m

Extension field      R = k [ X1, …, Xn ] / m

R’s transcendence degree over k     r

From Noetherian normalizing theorem*, (1) there exist algebraically independent elements of y1,…, yn R over k and (2) R is integral over k [y1, …, yr].

Prime ideal of k [y1, …, yr]     p

Prime ideal of R     p-

From rising theorem**     pk [y1, …, yr] = p

From R is field, p- = ( 0 ) therefore p- = ( 0 ).

Therefore k [y1, …, yr] is field.

Therefore r = 0

R is k’s algebraic extension.

K is algebraically closed field.  Therefore k = R.

k [ X1, …, Xn ] = k + m

Xi ai + mi

Xi a m

X1-a1, …, Xn – an  m

X1-a1, …, Xn – an ) is maximum ideal.

Therefore ( X1-a1, …, Xn – an ) = m

[Notes]

Noetherian normalizing theorem*

k is field.

R is finitely generated integral domain over k.

R’s transcendence degree over k is n.

There exist arbitrary elements x1, …, xin R, and becomes integral over k [x1, …, x].

Rising theorem**,

R is ring.

S is subring in R.

R is integral over S.

Prime ideal of S is p.

Prime ideal of R is p-.

There exists p-  S = p.

 

<Hilbert zero point theorem 2>

k is algebraically closed field.

When a is ideal of k [ X1, …, Xn ] and gk [ X1, …, Xn ] and all the points of Z ( a ) is 0,

g∈√a

[Proof]

k [ X1, …, Xn ] is Noetherian ring.

There exist finite elements f1, …, fm a.

A = (f1, …, fm )

From lemma*, there exists a certain natural number l.

g a

 a

[Note]

Lemma*

k [ X1, …, Xn ]  ∋ gf1, …, fm

Arbitrary point of A   P = ( a1, …, an )

Given condition

 ({ f1, …, fm })  g ( a1, …, an ) = 0

Conclusion is next.

There exist natural number l and elements h1, …, hm in k [ X1, …, Xn ]. 

g = m i=1 hifi

Tokyo October 1, 2007

Sekinan Research Field of Language

www.sekinan.org

 

No comments:

Post a Comment