Wednesday, 23 April 2025

Energy Distance Theory Note 3 Energy and Functional

 Energy Distance Theory

 

Note 3

Energy and Functional

 

TANAKA Akio

 

1

Riemannian manifold     (Mg) , (Nh)

C class map u : M  N

Tangent vector bundle of N     TN

Induced vector bundle on M from TN     u-1TN

Tangent space of N     Tu(x)N

Cotangent vector bundle of M     TM*

Map      du :  TM* u-1TN    

Section     du Γ(TM* u-1TN )

2

Norm     |du|

|du|2 =mi,j=1 nαβ=1 gijhαβ(u)(δuα/δxi)δuβ/δxj)

Energy density     e(u)(x) = 1/2  |du|2(x),  xM

Measure defined on from Riemannian metric g    μg

Energy     E(u) = e(u)dμg

3

is compact.

Space of all u     . C(MN)

Functional     E : C(MN R

 

[Additional note]

1 Vector bundle TM* u-1TN is compared with word.

2 Map du is compared with one time of word.

3 Norm |du| is compared with distance of tome.

4 Energy E(u) compared with energy of word.

5 Functional E is compared with function of word.

 

[Reference]

Substantiality / Tokyo February 27, 2005

Substantiality of Language / Tokyo February 21, 2006

Stochastic Meaning Theory 4 / Energy of Language / Tokyo July 24, 2008

 

Tokyo October 18

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment