Wednesday, 23 April 2025

Energy Distance Theory Conjecture 2 Geometry of Word

 Energy Distance Theory

 

Conjecture 2

Geometry of Word

 

TANAKA Akio

 

 

[Conjecture]

Word is infinite cyclic group.

 

[Explanation]

(Preissmann’s theorem)

When (Mg) is connected Riemann manifold and sectional curvature of M is always KM < 0, non-trivial commutative subset of functional group of Mπ1(M) always becomes infinite cyclic group.

Preparatory proposition for Preissmann’s theorem

(Proposition 1)

When (Mg) and (Nh) are compact Riemann manifold and N is non-positive curvature KN0, arbitrary continuous map f C0(MN) is free homotopic with harmonic map uC(M, N).

(Proposition 2)

When M is compact Riemann manifold, Ricci tensor of M is positive semidefinite RicM≥0 , is non-positive curvature KN0, and harmonic map is u : MN the next is concluded.

When N is negative curvature KN<0, u is constant map or map of u coincides with map of closed geodesic line.

Consideration for the theorem and propositions

1

m-dimensional C class manifold     M

Point of M     x

Tangent space of x     TxM

Inner product of TxM   gx

Coordinate neighborhood of     U

Local coordinate system of U     (x1, …, xm)

Function     gij : gx ( (/xi)x, (/xj)x), 1i, jm

gij is C class function over U.

Family of inner product     g = {gx}xM

g is called Riemannian metric.

When M has g, (Mg) is called Riemannian manifold.

2

Riemann manifold      (Mg)

M’s C class vector field    (M)   

Linear connection of M     

XYZX(M)

What  and XYuniquely satisfy the next is called Levi-Civita connection.

(i) Xg(YZ) = g(XYZ) + g(YXZ)

(ii) XY -YX = [XY]

3

m-dimensional Riemann manifold (Mg)    M

Levi-Civita connection of M     

XYX

R(XY) : = XY - YX - [XY]

Map R : = X(M×X(M)×X(M X(M)

R(XYZ) : = R(XY)Z

R is called curvature tensor of M.

4

xM

2-dimensional subspace of tangent space TxM     σ

σ’s normal orthogonal basis on gx     {vw} {v’w’}

K(vw) = R(x)(vwwv) = gx(R(x)(vw)wv)

v’ = cosθv + sinθww’ = sinθv±cosθw  (double sign directly used)

K(σ) : = R(x)(vwwv) = R(x)(v’w’w’v’)

K(σ) is called sectional curvature.

 

[References]

<Example of word’s infinite cycle is shown by the bellow.>

On Time Property Inherent in Characters / Hakuba March 28, 2003

Prague Theory / Tokyo October 2, 2004

Prague Theory 3 / Tokyo January 28, 2005

TOMONAGA’s Super Multi-Time Theory / Tokyo January 25, 2008

<On minimum unit of meaning, refer to the next.>

Cell Theory / From Cell to Manifold / Tokyo June 2, 2007

Reversion Analysis Theory / Tokyo June 8, 2008

Reversion Analysis Theory 2 /Tokyo June 12, 2008

Holomorphic Meaning Theory / Tokyo June 15, 2008

Holomorphic Meaning Theory 2 / Tokyo June 19, 2008

Energy Distance Theory / Conjecture 1 / Word and Meaning Minimum / Tokyo September 22, 2008

 

To be continued

Tokyo November 23, 2008

Sekinan Research Field of Language

www.sekinan.org

 

Postscript
[Reference November 30, 2008]

Distance of Word / November 30. 2008 / Sekinan.wiki.zoho.com

 

No comments:

Post a Comment