Wednesday, 23 April 2025

Distance Theory Algebraically Supplemented Note 3 Homology Group

 Distance Theory Algebraically Supplemented

Note 3

Homology Group

 

 

TANAKA Akio

 

1

Points in Euclid space     P0, …, Pq

Convex hull     Δ q = [P0, …, Pq ]

Order jth face of convex hull     εj : Δq-1Δq    ≤  q

k < j    εj ( Pk ) = Pk

j ≤ k    εj ( Pk ) = Pk+1

Space    X

Continuous map     σΔq 

Free module generated from all the <map σ> s     q ( X ) 

Boundary operator δ q ( X )  q-1 ( X )

δσ = σεj

δσ = 0     q-dimensional cycle

All the q-dimensional cycles      Zq X )

c, c’     q-dimensional cycles

x  q+1 ( X )

c - c’ δx      

and c’ are homolog.

Quotient group of Zq X ) that are homolog each other     Hq ( )

Hq ( ) is q-dimensional homology group.

 

2

Space     M

Fixed base point of M     x M

Unit interval     I

Continuous map from I     γI M

All that satisfy γ ( 0 ) = γ ( 1 ) = γ x0 ) is called loop space.    ΩM

ΩM has definition of product in homology.

Hp ΩM )  Hq ( ΩM )  Hp +qΩM )

 

[References]

<Symmetry Flow Language>

Homology on Language / Tokyo May 15, 2007

 

Tokyo November 9, 2007

 

Sekinan Research Field of Language

 

www.sekinan.org

No comments:

Post a Comment