Wednesday, 23 April 2025

Distance Theory Algebraically Supplemented 2 Space Preparatory consideration 9th For KARCEVSKIJ Sergej

 Distance Theory Algebraically Supplemented

2

Space Preparatory consideration

9th For KARCEVSKIJ Sergej

 

TANAKA Akio

 

1 

From <separation axiom>, topological space X is differentiated.

T1 <Frechét separation axiom> Set consisted from one point {x}X is closed set.

T<Hausdorff spacexy  x,yX  xUyVUV=Ø   Open sets U,exist.

T3 <Regular space> Closed sets F,  Open sets U, V    xU,  FV, U= Ø

T4 <Normal space> Closed sets F,G  Open sets U, V    FU,  GV, U= Ø

[Note]

Separation axiom is hypothetical conditions by which topological space can separate points or subsets from open set.

2

Set     X

Family of subsets of X     {Mλ}λΛ

Sum-set of {Mλ}λΛ      λΛMλ

When λΛMλ is equal to X, family of subsets of X i.e.{Mλ}λΛ is called <covering>.

When all the elements of family is open subsets, covering is called <open covering>.

3

Set     X

Arbitrary open covering of X     U={Uα αΛ}

Against finite α1, …, αkΛ, Xki=1 Uαi .This is abstraction of <Heine-Borel’s theorem>.

X is called <compact space>.

4

In <axiom of choice>, compact subsets of Hausdorff space is closed sets.

[Note]

Axiom of choice is next.

Set     A≠Ø

Elements of A    a≠Ø

Map f A Sum-setA

Toward all the elements of A, f (xx exists.

5

In <axiom of choice>, compact Hausdorff space is normal space T4.

In T4, Closed sets F,G  Open sets U, V    FU,  GV,  U= Ø.

Compact Hausdorff space is regarded as <language>.

Open sets U and V are regarded as two different <words>.

6

Product space X = ΠiI X in family of compact spaces < Xi ; iI>

In <axiom of choice>, product space is compact. This is <Tikchonov’s theorem>.

Product space X is regarded as <sentence>.

 

Tokyo October 9, 2007

 

Sekinan Research Field of Language

 

www.sekinan.org

No comments:

Post a Comment