Finiteness of Words
[Preparation 1]
k is algebraic field.
is finite subset.
V is projective algebraic manifold over k.
D is defined divisor over k.
All the sub-manifolds are over k.
Rational point is k-rational point.
k is algebraic field.
is finite subset.
V is projective algebraic manifold over k.
D is defined divisor over k.
All the sub-manifolds are over k.
Rational point is k-rational point.
[Preparation 2]
L is rich line bundle.
|L| is complete linear system.
D is divisor of |L|.
is regular cut to D.
is approximate function to D.
is counting function to D.
is rich line bundle.
When islarge, becomes rich.
is basis of .
is embedding.
L is rich line bundle.
|L| is complete linear system.
D is divisor of |L|.
is regular cut to D.
is approximate function to D.
is counting function to D.
is rich line bundle.
When islarge, becomes rich.
is basis of .
is embedding.
[Definition 1]
,
,
.
[Definition 2]
Subset of rational points \ is integer under the next condition.
(i) There exists a certain constant .
(ii) \ .
,
,
.
[Definition 2]
Subset of rational points \ is integer under the next condition.
(i) There exists a certain constant .
(ii) \ .
[Theorem, Faltings]
A is Abelian variety over k.
When D is reduced rich divisor, arbitrary integer subset \ is always finite set.
A is Abelian variety over k.
When D is reduced rich divisor, arbitrary integer subset \ is always finite set.
[Interpretation]
D is meaning minimum.
\ is word.
A is language.
D is meaning minimum.
\ is word.
A is language.
[References]
From Cell to Manifold / Cell Theory / Tokyo June 2, 2007
Amplitude of Meaning Minimum / Complex Manifold Deformation Theory / Tokyo December 17, 2008
Language, Word, Distance, Meaning and Meaning Minimum by Riemann-Roch Formula / Tokyo August 15, 2009
From Cell to Manifold / Cell Theory / Tokyo June 2, 2007
Amplitude of Meaning Minimum / Complex Manifold Deformation Theory / Tokyo December 17, 2008
Language, Word, Distance, Meaning and Meaning Minimum by Riemann-Roch Formula / Tokyo August 15, 2009
Tokyo
January 29, 2012 Sekinan Research Field of Language
January 29, 2012 Sekinan Research Field of Language
No comments:
Post a Comment