Monday, 30 April 2018

Noncommutative Distance Theory Note 5 Kontsevich Invariant


Note 5
Kontsevich Invariant



R3 : = C × R
Knot     K
Parameter of height     t
Two points on K at t     z ( )  z’ ( t )
Selected point of z and z’     P
z and z’ Code figure on S1     DP
Iteration integral     Z’ ( ) : = Σm=0∞  ×(-1)#P1DP
Quotient vector space that is quoted by 3 relations ( AS, IHX and STU )* over on which Jacobi figure is described A ( S)
Kontsevich invariant    Z (  A ( S)
[Note]
*3 relations ( AS, IHX and STU ) are seemed to be related with characters’ descriptive system.


No comments:

Post a Comment