Sunday, 29 April 2018

Complex Manifold Deformation Theory​ ​ ​ Conjecture B 1 Map between Words

Complex Manifold Deformation Theory
 
Conjecture B 
1 Map between Words 
 
TANAKA Akio 
     
 
Conjecture 
Words have map.
[View]
 (Theorem)
<line 1>Compact Riemann manifolds     (Mg), (N, h)
<line 2>Harmonic map from (Mg) to (N, h)      f
<line 3>Sectional curvature of (N, h)     everywhere non-positive 
<line 4>If Ricci curvature of (Mg) is positive, is constant map.
<line 5>If Ricci curvature of (Mg) is non-positive, f is all geodesic map.
[Impression]
1
Theorem is assumptively considered for words.
From <line 1>, words are assumed as compact Riemann manifolds.
From <line 2>, grammar is assumed as harmonic map.
From <line 3>, for instance, m-dimensional real hyperbolic type space has everywhere -1 
sectional curvature.
From <line 4>, orthogonal frame field is considered.
Arbitrary point      x
M
Neighborhood of x     U
Orthogonal frame field over U     {ei}mi=1
 is constant over U 
 d 
 (ei ) = 0
E(
) = 0
From <line 5>, geodesic is considered.
 is harmonic map 
M
'
' = 0
2
Manifold that Ricci curvature of (Mg) is positive is defined as notional word.
Manifold that Ricci curvature of (Mg) is non-positive is defined as functional word.
On notional word and functional word, refer to the next.
#1 Quantification of Quantum / Tokyo May 21, 2004 / Sekinan Research Field of Language
Also refer to the next.
#2 Property of Quantum / Tokyo May 21, 2004 / Sekinan Research Field of Language
Tokyo January 5, 2009
Sekinan Research Field of language
 
Back tosekinanlogoshome 

No comments:

Post a Comment