Sunday, 31 March 2024

Stochastic Meaning Theory 2 Period of Meaning 13th for KARCEVSKIJ Sergej On what there exists confirmation of meaning in word

 Stochastic Meaning Theory 2


Period of Meaning
On what there exists confirmation of meaning in word


1 <σ additive>
Set     X
A family of subset of     M
When M satisfies the next, it is called σ additive.
(i) XØ M
(ii) AM  XAM
(iii) An(n=1, 2, …) n=1 AnM

2 <Measurable space>
Set     X
Family of σ additive     M
Pair ( XM ) is called measurable space.

3 <Measure space>
Measurable space      ( XM )
Function over M     μ
When μ is satisfies the next, it is called measure.
(i) μ (A)[0,]
(ii) μ (0) = 0
(iii) AnAAm = 0  (nm)
μ (n=1 An) = Σn=1 μ (A)
XM, μ ) is called measure space.
Measure that is 1 by all the measures is called probability measure.

4 <Probability space>
Measure space in which all the measures are 1 is called probability space.
Set     Ω
Element of Ω     ω
σ-field      F
Element of F     A
Function over F   P 
Measure ()     probability
Probability space     ( ΩFP ).

5 <Borel additive>
Measurable space     ( XM ), ( YN )
Map     XY
Arbitrary AN
f -1 ( A ) = {xN ; f (x)A }M
Map f is called M-N measurable.
A family of subsets of X     U
σ ( U ) = ( M ; M is σ additive that contains U )
σ ( U ) is also notated B ( X ) that is called Borel σ additive.
= [-, +]
Borel σ additive of  is notated B(.
Element of Borel σ additive is called Borel set.

6 < M-B(measurable>
Measurable space     ( XM )
Function from X to      f
When f satisfies one of the next, it is called M-B(measurable.
(i) -1 ( [-] )M,  -1 ( [-a ) )M
(ii) -1 ( [ a] )M,  -1 ( (a] )M

7 <F-measurable>
When function f : X is M-B(measurable, it is called M-measurable function, that is generally notated F-measurable.

8 < Ft+-measurable>
Countable sequence of probability space      ( ΩnFnPn ).

9 <Random variable>
Probability space     ( ΩFP )
valued function over Ω     X
When X is Ft+-measurable, X is called random variable.

10 <Expectation (Mean)>
Probability space     ( ΩFP )
| X (ω) | is integrable.
Expectation of random variable EX     Ω X(ω)P()
Expectation is also called mean.

11 <Covariance>
Random variable     ( X (ω) – EX )2
Variance     Expectation of ( X (ω) – EX )2    
Random Variable     XY
Covariant    cov ( XY ) = E ( XEX ) (Y-EY )    X (ω) and Y (ω) are integrable.

12 < Probability distribution >
Random variable     X
Probability     P
Probability distribution function     F (x) = P ( X)

13 <Density function>
Probability distribution over R     F x )
Function ρ(x) satisfies the next, it is called density function for F.
b ) - F a ) = bρ(x)dx

14 <Gauss distribution>
mRd
d×d positive definite symmetric matrix    Σ
Density function over Rfor Σ     ( 2π )-d/2 (det Σ )-1/2exp{-1/2 (Σ-1 (x-m), x-m ) }
Gauss distribution N ( mΣ )      distribution that has ( 2π )-d/2 (det Σ )-1/2exp{-1/2 (Σ-1 (x-m), x-m ) }

15 <Independent>
Set    Λ
Element of Λ     λ
Sub-family of σ additive F     Fλ
Sequence of Fλ     { Fλ}λΛ
When { Fλ}λΛ satisfies the next, it is called independent on probability P.
Arbitrary finite sequence {λ1, …, λn}
Arbitrary AiFλi  = 1, 2, …, )
P ( A1A2∩…∩An ) = AA2 ) P ( A  

16 <Brownian motion>
Probability space     ( ΩFP )
Family of Rd valued random variable     {Bt}t0
When {Bt}tsatisfies the next, it is called d-dimensional Brownian motion from starting position x.
(i) B0 = x at probability 1 and Bis continuous on t.
(ii) When 0 = t0t1tn, {Btk – Btk-1}n k=1 is independent.
(iii) When 0s<tbt – Bs is mean 0, Gauss distribution of covariant matrix ( t-s )I.

17 < F>
xRd
d-dimensional Brownian motion that starts from x     {Bt}t0
Ft is defined by the next.
Fσ (Bst )

18 <Markov time>
d-dimensional Brownian motion    ( {Bt}t0Px )
Fσ (Bst ) , Ft+  = ∩>0 Ft+ε
[0, ] valued random variable     τ
When τ satisfies the next, it is called Markov time on Ft+ε.
(i) t0
(ii) {ωΩ τ (ω) }Ω

19 <Martingale>
Martingale is defined by the next.
(i)  {Mt} is continuous at probability 1.
(ii) For every t0, Mt is Ft+-measurable.
(iii) For every t0, Mt is integrable. When ts0, E ( Mt Fs) = Ms

20 <Theorem>
Continuous Martingale on Ft+     {Mt}t0
{M; o} is bounded.
For bounded Markov time τ, next is brought.
EMτ = EM0

21 <Confirmation>
Meanings inherent in word : =  {Mt}t0
All of time inherent in word : = oT<∞
Specific time of word that has meanings : = τ  
Specific meaning of specific time : = EMτ
Confirmation of specific meaning : = (EMτEM0)

Tokyo June 27, 2008

No comments:

Post a Comment