Sunday, 1 April 2018

Linguistic Premise Premise of Algebraic Linguistics 4-2


 Premise of Algebraic Linguistics 4-2

    TANAKA Akio

8 <image of sheaf>
Homomorphism fo sheaf     f : F  G
 Image of sheaf     Im ( ) = associated sheaf F / Ker ( )

9 < exact sequence of sheaf>
Sheaf     F
Exact sequence of sheaf     string of homomorphism   Im ( i-1 ) = Ker ( i )

10 <aberlian category>
Aberian category     ( Sh) ; all the sheafs in aberian group over topological space X    

11 <ringed space>
Topological space     X
Ring’s sheaf over X     OX
Ringed space     ( XO)
Local ring     ring that has only one maximum ideal
Point of ringed space    P
Local ringed space     stalk at the point being local ring

12 <closed algebraic subset>
n-dimensional affine space     Cn
n-dimensional polynomial ring    C [ x1, …, xn ]
Ideal      C [ x1, …, xn ]
Subset of Cn
Common zero poin set V0 ( I ) = { P  Cn ; h ( ) = 0,  I }
The subset is closed algebraic subset that satisfies closed set axiom.
V0 ( 1 ) = 0
V( 0 ) = Cn
VIJ ) = VI )  V0 ( J )
V0 ( λIλ ) = λV0 (Iλ)
 Cn that is defined by the upper conditions is Zariski topology.
Usual Cn is real topology.

13 <Hilbert basis theorem>
Polynomial ring C [ x1, …, xn ]
Ideal of the polynomial ring     I
Finite polynomial      h1, …, h∈ C [ x1, …, xn ]
Generated I     I  = (h1, …, h)

14 <Hilbert zero point theorem>
Set of all the points in affine space Cn     P = ( a1, …, an )
Polynomial ring    C [ x1, …, xn ]
Maximu ideal of the polynomial ring     mP = (x1-a1, …, xnan )
There is one to one correspondence between P and mP.

Tokyo September 29, 2007

No comments:

Post a Comment