Note 2
Tensor Product
1
Hilbert spaces H, K
Linear space H ⊕ K := { x ⊕ y ; x ∈ H, y ∈ K }
x1 ⊕ y1 + x2 ⊕ y2 = ( x1 + y1 ) ⊕ ( x2 + y2 ), λ( x ⊕ y ) = λx ⊕ λy
Inner product <x1 ⊕ y1 , x2 ⊕ y2 > = <x1, x2 > + <y1, y2 >
H ⊕ K direct sum Hilbert space
2
Hilbert spaces H, K
Direct product space H ×K = { (u, v) ; u ∈ H, v ∈ K }
Functional over H ×K x ⊗ y (u, v ) = <u, x> <v, y >
Linear space by functional H ⊙K
f = ∑n i=1λixi⊗yi ∈ H ⊙K
g = ∑n j=1μjuj⊗vj∈ H ⊙K
Inner product over H ⊙K < f, g > = ∑n i=1∑n j=1λ―iμj<xi, uj><yi, vj>
Hilbert space with inner product is tensor product Hilbert space H ⊙K .
No comments:
Post a Comment