Friday, 3 August 2018

Reference Paper / Sekinan View, June 2015 / Part 1

Reference Paper / Sekinan View, June 2015 / Part 1

19/01/2016 10:33

CHINO Eiichi and Golden Prague

Leave a comment [Edit]

CHINO Eiichi and Golden Prague


TANAKA Akio

C also died early, who had taught me Russian and linguistics. He loved
the old city that had the beautiful towers and bridges.
In C‘s many works there was the essay “The Moon of Carpathians”. He wrote
that the conference was over, departed at Kiev, saw the moon and
churches over the Carpathian Mountains, impetuously went to the west,
passed Slovakia, Moravia, Bohemia, and at last reached “Golden Prague”. Prague, it was his youth itself.
Now I cannot hear his voice telling the various anecdotes on languages,
of which he freely had commanded. By the short heading, a newspaper
reported his death, naming as  “the genius of linguistics”.
[References]
                                                              Tokyo
28 June 2014
Sekinan Research Field of Language

Time of Word

Leave a comment [Edit]
Complex Manifold Deformation Theory
Conjecture A 
5 Time of Word 
TANAKA Akio 
     
Conjecture 
Word has time.
[View]
¶Mathematics is a view in which I freely appreciate objects as if I see flowers, mountains 
and vigorous port towns at dawn.  
1
Kähler manifold     X
Kähler form     w
A certain constant     c
Cohomology class of w     2πc1(X)
c1(X)>0
Kähler metric     g
Real C function     f
X (ef– 1)wn = 0
Ric(w) –w = f
2
Monge-Ampère equation 
(Equation 1)
Use continuity method
(Equation 1-2)
Kähler form     w’ = w +  f
Ric(w‘) = tw‘ + (1-t)w
δ>0
I = {  }
3 is differential over t.
Ding’s functional     Fw
4
(Lemma)
There exists constant that is unrelated with t.
When utis the solution of equation 1-2, the next is satisfied.
Fw(ut)C
5
Proper of Ding’s functional is defined by the next.
Arbitrary constant     K  
Point sequence of arbitrary P(Xw)K     {ui}
(Theorem)
When Fw is proper, there exists Kähler-Einstein metric.
[Impression]
¶ Impression is developed from the view.
1
 If word is expressed by u , language is expressed by Fw and comprehension of human 
being is expressed by C, what language is totally comprehended by human being is 
guaranteed.
Refere to the next paper.
#Guarantee of Language
2
If language is expressed by being properly generated, distance of language is expressed by 
Kähler-Einstein metric and time of language is expressed by tall the situation of language 
is basically expressed by (Equation1-2).
Refer to the next paper.
#Distance Theory
3
If inherent time of word is expressed by t‘s [δ, 1], dynamism of meaning minimum is 
mathematically formulated by Monge-Ampère equation.
Refer to the next papers.
#1
On Time Property Inherent in Characters
#2
From Cell to Manifold
#3<For meaning minimum’s finiteness>
Amplitude of Meaning Minimum
Tokyo January 1, 2009
Sekinan Research Field of language

Amplitude of Meaning Minimum

Leave a comment [Edit]
Complex Manifold Deformation Theory 
Conjecture A 
4 Amplitude of Meaning Minimum 
TANAKA Akio 
     
Conjecture 
Meaning minimum has finite amplitude.
[View*]
*Mathematics is a view in which I freely appreciate objects as if I see flowers, mountains 
and vigorous port towns at dawn.  
1
Bounded domain of Rm      Ω
C function defined in Ω     uF
uF satisfy the next equation.
F(D2u) = Ψ
D2u is hessian matrix of u.
F is C function over Rm×m .
Open set that includes range of D2u     U
U satisfies the next.
(i) Constant λΛ     
(ii) F is concave.
2
(Theorem)
Sphere that has radius 2R in Ω       B2R
Sphere that has same center with B2and has radius σR in Ω      BσR
Amplitude of D2u     ampD2u
ampBσRD2u = supBσRD2u – infBσRD2u
0<σ<1
and e are constant that is determined by dimension m and .
ampBσRD2ue(ampBRD2u +  supB2R|D| + supB2R |D2| )
[Impression]
1 Meaning minimum is the smallest meaning unit of word. Refer to the reference #2 and 
#2′.
2 If meaning minimum of word  is expressed by BσR, it has finite amplitude in adequate 
domain.
[References 1 On meaning minimum]
#1 Holomorphic Meaning Theory / 10th for KARCEVSKIJ Sergej
#2 Word and Meaning Minimum
#2′ From Cell to Manifold
#3 Geometry of Word
[References 2 On generation of word]
#4 Growth of Word
#5 Generation Theorem
#6 Deep Fissure between Word and Sentence
#7 Tomita’s Fundamental Theorem
#8 Borchers’ Theorem
#9 Finiteness in Infinity on Language
#10 Properly Infinite
#11 Purely Infinite
[References 3 on distance and mirror on word]
#12 Distance Theory / Tokyo May 5, 2004 / Sekian Linguistic Field
#13 Quantification of Quantum / Tokyo May 29, 2004 / Sekinan Linguistic Field
#14 Mirror Theory / Tokyo June 5, 2004 / Sekinan Linguistic Field
#15 Mirror Language / Tokyo June 10, 2004 / Sekinan Linguistic Field
#16 Reversion Theory / Tokyo September 27, 2004 / Sekinan Linguistic Field
#17 Mirror Theory Group / Tokyo December 9, 2008 / Sekinan Linguistic Field
To be continued
Tokyo December 17, 2008
Sekinan Research Field of language
[References 4 / December 23, 2008 / on time of word]
#18 Time of Word / Tokyo December 23, 2008 / sekinan.wiki.zoho.com

Homology Structure of Word​

Leave a comment [Edit]
Floer Homology Language 
TANAKA Akio 
     
Note6 
Homology Structure of Word
§ 1
1
Compact manifold in small diameter      M
Inner product space     h (M)
Map      h (Mk→  h (M)     
2
A model and B model by Witten, E.
A model     M as symplectic structure
B model     M as complex structure  
3
(A model)
(Definition)
kA (M) = H k(M;C)
*A (M) = kA (M
Inner product <. , .>A     <uv>A =      (  ; cup product)
mA, 02(uv) = 
4
(Theorem)
*A (M), mA, 02, <. , .>A ) is Frobenius algebra.
5
Oriented  2-dimensional manifold with genus g     Σg
6
J (Σg) = {JΣg | Smooth complex structure over Σg }
Integer over 0     k
Different k-number points over Σg     z1, …, zk     (Gathered points are expressed by . )
Diff (Σg) = {ψ : Σg → Σg | ψ() = ψ is differential homeomorphism. }
Quotient space      g,k J (Σg) / Diff (Σg
Rieman surface of genus g with k marked points     (Σ
(Σg,k 
Autmorphism group     Aut (Σ= { ψ : Σ → Σ | ψ is biregular.ψ() = }
Compactification of  g,k      CM g,k 
§2
Symplectic manifold    M
Differential 2-form over M     wM
Well-formed almost complex structure with wM     JM
βH2(MZ)
 (is pseudoholomorphic.)
(Σ,φ) 
2
[(Σ,φ)] 
Evaluation map     ev[(Σ,φ)]=
3
Forgetting map    fg : 
Enlarged Forgetting map    fg : 
3
(Definition)
(Gromov-Witten invariant)
(ev, fg)*
Gromov-Witten invariant is expressed by GWg,k(M, wMβ)
4
(Theorem)
Sumset    is compact.
5
(Associative law)
(Theorem)
[Image]
Meaning minimum of word is identified with .
Word is identified with 
Commutativity of meaning minimums in word guaranteed by theorem of associative law. 
[References]
Homology on Language / Symmetry Flow Language / Tokyo May 15, 2007
From Cell to Manifold / Cell Theory / Tokyo June 2, 2007
Deep Fissure between Word and Sentence / Algebraic Linguistics / Linguistic Result / Tokyo 
September 10, 2007
Reversion Analysis Theory / Tokyo June 8, 2008
Reversion Analysis Theory 2 / Tokyo June 12, 2008
Holomorphic Meaning Theory 10th for KARCEVSKIJ Sergej / Tokyo June 15, 2008
Holomorphic Meaning Theory 11th for KARCEVSKIJ Sergej / Tokyo June 19, 2008
Word and Meaning minimum / Energy Distance Theory / Conjecture 1 / Tokyo September 
22, 2008
Geometry of Word / Energy Distance Theory /  Conjecture2 / Tokyo November 23, 2008
Amplitude of meaning minimum / Complex Manifold Deformation Theory / Conjecture A4 / 
Tokyo December 17, 2008
Tokyo June 16, 2009
Sekinan Research Field of Language
[Related Note / June 18, 2009]
Potential of Language / Floer Homology Language / June 18, 2009

Basis of the further study on language – Potential

1 Comment [Edit]
Basis of the further study on language – Potential 
Floer Homology Language 
TANAKA Akio 
  
Note1 
Potential of Language 
   
¶ Prerequisite conditions 
Note 6 Homology structure of Word
  
(Definition) 
(Gromov-Witten potential)  
 
(Theorem) 
(Witten-Dijkggraaf-Verlinde-Verlinde equation)  
  
(Theorem) 
(Structure of Frobenius manifold) 
Symplectic manifold     (MwM
Poincaré duality     < . , . > 
Product     <V1 V2V3> = V1V2V3
(MwM) has structure of Frobenius manifold over convergent domain of Gromov-Witten potential. 
 
(Theorem) 
Mk,β (Q1, …, Qk) =  
 
N(β) expresses Gromov-Witten potential. 
 
  
[Image] 
When Mk,β (Q1, …, Qk) is identified with language, language has potential N(β). 
     
[Reference] 
Quantum Theory for language / Synopsis / Tokyo January 15, 2004 
First designed on   
Tokyo April 29, 2009 
Newly planned on further visibility  
Tokyo June 16, 2009  
Sekinan Research Field of Language 
[Note, 31 March 2015] 
This paper was first designed for energy of language. But at that time, I could not write 
the proper approach from the concept of energy by mathematical process. So I wrote 
the paper through the concept of potential. Probably energy is one of the most fundamental
factors on language.
In 2003 I wrote Quantum Theory for Language , before which I wrote the manuscript focusing 
the concept of quantum abstracted from the ideogram of classical Chinese written language. 
The last target of manuscript was energy and meaning of quantum that was the ultimate 
unit of language. 
Refer to the next. 

Preparation for the energy of language

Leave a comment [Edit]

Preparation for the energy of language

TANAKA Akio

The energy of language seems to be one of the most fundamental theme for the further step-up  study on language at the present for me. But the theme was hard to put on the mathematical description. Now I present some preparatory  papers written so far.
  1. Potential of Language / Floer Homology Language / 16 June 2009
  2. Homology structure of Word / Floer Homology Language / Tokyo June 16, 2009
  3. Amplitude of meaning minimum / Complex Manifold Deformation Theory / 17 December 2008
  4. Time of Word / Complex Manifold Deformation Theory / 23 December 2008
Tokyo
3 April 2015
Sekinan Library

How does the language models connect with natural language?

Leave a comment [Edit]

How does the language models connect with natural language?


Natural language contains many important factors theoretically abstracted in the long philological studies.
At the contrast the language models made by mathematical description are themselves have not any connections with natural language.
The models by mathematics, which is totally composed from a few premises, contains many theorems and their understructures.
In these underconstructures, natural language’s factors are resembled with mathematical factors.
At the result, some resemblances are compared between mathematical models and natural language.
From these works, some resemblances to language universals may be appeared in the factors of mathematical models modified by natural language.
7 April 2014
[5 May 2014 Reference added]
True-false problem of the Crete 
Tokyo
5 May 2014

Sekinan Research Field of Language        

Read Andre Weil

Leave a comment [Edit]
Read Andre Weil 
TANAKA Akio
                                      
Read WEIL’s Elliptic Functions according to Eisenstein and Kronecker, 1999 by Japanese translation, Springer-Verlag Tokyo, 2005.
Seems to be a fantasy of mathematics, but very pitifully the real beauty of which will not be recognized in so long time for me.
In September 15, 2011 I wrote the paper, Loop Time of Character, that paper, using elliptic curve, shows the structure of infinitely repeated time in language which theme was early treated for the language model of mine.
The paper, On Time Property Inherent in Characters 2003 was written on the time that determines the linear-like grammar of classic written Chinese through the study on WANG Guowei‘s papers on ancient Chinese inscriptions on bone and tortoiseshell.

Tokyo
February 27, 2012
Sekinan Research Field of Language

Charles Bally’s LINGUISTIQUE GENERALE ET LINGUISTIQUE FRANCAISE 1932-1963

Leave a comment [Edit]
Charles Bally’s LINGUISTIQUE GENERALE ET LINGUISTIQUE FRANCAISE 1932-1963
TANAKA Akio 
                         
Charles Bally is a successor of Ferdinand de Saussure together with Sergej Karcevskij.
He wrote LINGUISTIQUE GENERALE ET LINGUISTIQUE FRANCAISE 1932-1963 that is a clear basis for my language study.
Tokyo
9 November 2012
Sekinan Research Field of Language

Sayama Assumption on Language

Leave a comment [Edit]
Sayama Assumption on Language   
1. Language is changeable.*1
2. Language has substance. Because it is changeable.*2
3. Language has time. Because it is changeable.*3
4. Language has boundary. Because it is substance.*4

Description

Leave a comment [Edit]
For language study, its theoretical  description is a very important role for understandability and clarity of the paper. Till my age 30s , I had never satisfied my way to study and write. Philosophical and philological methods have been felt somewhere ambiguous and unreliable to proceed sensitive research of language.
My great turn occurred at the relearning of mathematics, especially geometrical algebra. In the past 1970s, I was also one of the many influenced students from Bourbaki, that was the brightest star in the universe of minute and rigorous road to the destination. But my poor way was always unevenness and wide deep fog was surrounded in the vast field in front of mine. What at last I  arrived at the gate of confirmed style was the beginning of the 21st century. At that time I wrote several trial papers related with language universals but still never had been satisfied for their ambiguity and intensive styles. My next crux came at my study of new wave of algebraic geometry, complex manifold deformation at 2008. Its result became some papers named Complex Manifold Deformation Theory. This was the very fresh and clear way to study language for me.
Conjecture A
1. Distance of Word
2. Reflection of Word
3. Uniqueness of Word
4. Amplitude of Meaning Minimum
5. Time of Word
6. Orbit of Word
Conjecture B
1.  Map between Words
2.  Understandability of Language

Presupposition on Natural Language

Leave a comment [Edit]
Presupposition on Natural Language
                      
1.
Language is variable. If it be true, what is the base of variability?
2.
Language is pronounceable. If it be true, what is emerged by pronounced?
3.
Language is recordable. If it be true, what is emerged by recorded?
4.
Example.
An apple is variable and will be rotten by time proceeding.
An apple is pronounced at a glossary shop and will be bought by a homemaker.
An apple is recordable  and will be recorded in a photo.
5.
What distinguishes language from apple? The answer is uncertain. So I make the language models parting from natural language.



Read more: https://srfl-paper.webnode.com/news/basis-of-study-sekinan-view-june-2015/

No comments:

Post a Comment