Monday, 20 July 2015

Noncommutative Distance Theory Note 4 Atiyah’s Axiomatic System

Noncommutative Distance Theory

Note 4
Atiyah’s Axiomatic System

TANAKA Akio

1
ATIYAH Michael’s axiomatic system of topological quantum field theory, abbreviated TQFT, is shown below.
Oriented smooth compact d-dimensional manifold     Σ
Finite dimensional complex vector space     Z ( Σ )
d + 1 dimensional manifold that has boundary     Y
Functor     Z    
Z (  Z ( Σ )
Axiom 1   Z ( Σ* ) = Z ( Σ )*   Σ* is reverse orientation of ΣZ ( Σ )* is dual space of Z ( Σ ).
Axiom 2   Z ( Σ1Σ2) = Z ( Σ1  Z ( Σ2 )
Axiom 3   Z ( ) = Z ( Y2  Z ( Y1 )
Axiom 4   Z ( 0 ) = 
Axiom 5   Z ( Σ×) = idZ( Σ )
2
In TQFT, when Z ( Y1 ) = Z ( Y2 ) and the both are connected, becomes a compact manifold.
3
The generated manifold has meridian α and longitude β.
α is oriented by Σ.
β is seemed to be time development by axiom 5.
4
On algebra, α is corresponded to monodromy and β is corresponded to Frobenius automorphism.
5
From algebraic number field K’s Galois extension L/K and K’s prime ideal p, Frobenius automorphism is defined.
6
From prime ideal, prime number is considered for the roots of space that has orientation which shows the distance.


Tokyo December 22, 2007
Sekinan Research Field of Language
www.sekinan.org

No comments:

Post a Comment