Friday, 13 September 2019

Distance Theory Algebraically Supplemented Note 3 Homology Group

Note 3
Homology Group
 
 
 
1
Points in Euclid space     P0, …, Pq
Convex hull     Δ q = [P0, …, Pq ]
Order jth face of convex hull     εj : Δq-1→Δq    0 ≤ ≤ q
k < j    εj ( Pk ) = Pk
j ≤ k    εj ( Pk ) = Pk+1
Space    X
Continuous map     σ: Δq →
Free module generated from all the <map σ> s     q ( X ) 
Boundary operator δ q ( X ) → q-1 ( X )
δσ = σ〇εj
δσ = 0     q-dimensional cycle
All the q-dimensional cycles      Zq ( X )
c, c’     q-dimensional cycles
x ∈ q+1 ( X )
c - c’ δx      
and c’ are homolog.
Quotient group of Zq ( X ) that are homolog each other     Hq ( )
Hq ( ) is q-dimensional homology group.
 
2
Space     M
Fixed base point of M     x∈ M
Unit interval     I
Continuous map from I     γI →M
All that satisfy γ ( 0 ) = γ ( 1 ) = γ x0 ) is called loop space.    ΩM
ΩM has definition of product in homology.
Hp ( ΩM ) ╳ Hq ( ΩM ) → Hp +qΩM )
 
[References]
 
 
 


Read more: https://srfl-paper.webnode.com/news/distance-theory-algebraically-supplemented-note-3-homology-group/

No comments:

Post a Comment