Sunday, 1 July 2018

Cell Theory  Continuation of Quantum Theory for Language For LEIBNIZ and JAKOBSON 2007

From Cell to Manifold


Cell Theory 
Continuation of Quantum Theory for Language
For LEIBNIZ and JAKOBSON


1
Cell is defined by the following.
 n-dimensional ball Dn has interior that consists of cells. Cell is expressed by Dn - δDn and notated to en that has no boundary.
δis boundary operator. 
Homomorphism of Dn is notated to ēn.
ēn  - δēn = en
2
Set of no- boundary-cells becomes cell complex.
3
Some figures are expressed by cell. hn is attaching map.
n-dimensional sphere      Sn =  ē0 ∪hn  ēn   
n-dimensional ball          Dn = ( ē0 ∪hn-1  ēn ) ∪ ēn
Torus                              T2 = ( ē0  ∪h1  ( ē0 ∪ēn ) )∪h2 ē2
3 Grassmann manifold is defined by the following.
Grassmann manifold GR(m, n) is all of n-dimensional linear subspaces in m-dimensional real vector space.
                                        S1 = GR( 2, 1 )
4
Canonical vector bundle γ is defined by the following. E is all space. π is projection.
γ= ( E, π, GR(m, n) )
5
Here from JAKOBSON Roman ESSAIS DE LINGUISTIQUE GÉNÉRALE, <semantic minimum> is presented.
Now <semantic minimum> is expressed by cell ē3.
6
<Word> is expressed by D2.
7
<Sentence> is expressed by Grassmann manifold’s canonical vector bundle γ1 ( GR(3, 1) ).

Tokyo
June 2, 2007

No comments:

Post a Comment