Tuesday, 19 January 2016

Sekinan View / June 2015 / Basic Data for present study

CHINO Eiichi and Golden Prague

Leave a comment [Edit]

CHINO Eiichi and Golden Prague


TANAKA Akio
C also died early, who had taught me Russian and linguistics. He loved
the old city that had the beautiful towers and bridges.
In C‘s many works there was the essay “The Moon of Carpathians”. He wrote
that the conference was over, departed at Kiev, saw the moon and
churches over the Carpathian Mountains, impetuously went to the west,
passed Slovakia, Moravia, Bohemia, and at last reached “Golden Prague”. Prague, it was his youth itself.
Now I cannot hear his voice telling the various anecdotes on languages,
of which he freely had commanded. By the short heading, a newspaper
reported his death, naming as  “the genius of linguistics”.
[References]
                                                              Tokyo
28 June 2014
Sekinan Research Field of Language

Time of Word

Leave a comment [Edit]
Complex Manifold Deformation Theory
 
 
Conjecture A 
5 Time of Word 
 
TANAKA Akio 
     
 
Conjecture 
Word has time.
[View]
¶Mathematics is a view in which I freely appreciate objects as if I see flowers, mountains 
and vigorous port towns at dawn.  
1
Kähler manifold     X
Kähler form     w
A certain constant     c
Cohomology class of w     2πc1(X)
c1(X)>0
Kähler metric     g
Real C function     f
X (ef– 1)wn = 0
Ric(w) –w = f
2
Monge-Ampère equation 
(Equation 1)
Use continuity method
(Equation 1-2)
Kähler form     w’ = w +  f
Ric(w‘) = tw‘ + (1-t)w
δ>0
I = {  }
3 is differential over t.
Ding’s functional     Fw
4
(Lemma)
There exists constant that is unrelated with t.
When utis the solution of equation 1-2, the next is satisfied.
Fw(ut)C
5
Proper of Ding’s functional is defined by the next.
Arbitrary constant     K  
Point sequence of arbitrary P(Xw)K     {ui}
(Theorem)
When Fw is proper, there exists Kähler-Einstein metric.
[Impression]
¶ Impression is developed from the view.
1
 If word is expressed by u , language is expressed by Fw and comprehension of human 
being is expressed by C, what language is totally comprehended by human being is 
guaranteed.
Refere to the next paper.
#Guarantee of Language
2
If language is expressed by being properly generated, distance of language is expressed by 
Kähler-Einstein metric and time of language is expressed by tall the situation of language 
is basically expressed by (Equation1-2).
Refer to the next paper.
#Distance Theory
3
If inherent time of word is expressed by t‘s [δ, 1], dynamism of meaning minimum is 
mathematically formulated by Monge-Ampère equation.
Refer to the next papers.
#1<For inherent time>
On Time Property Inherent in Characters
#2<For meaningminimum>
From Cell to Manifold
#3<For meaning minimum’s finiteness>
Amplitude of Meaning Minimum
Tokyo January 1, 2009
Sekinan Research Field of language
 

Amplitude of Meaning Minimum

Leave a comment [Edit]
Complex Manifold Deformation Theory 
 
Conjecture A 
4 Amplitude of Meaning Minimum 
 
TANAKA Akio 
     
 
Conjecture 
Meaning minimum has finite amplitude.
[View*]
*Mathematics is a view in which I freely appreciate objects as if I see flowers, mountains 
and vigorous port towns at dawn.  
1
Bounded domain of Rm      Ω
C function defined in Ω     uF
uF satisfy the next equation.
F(D2u) = Ψ
D2u is hessian matrix of u.
F is C function over Rm×m .
Open set that includes range of D2u     U
U satisfies the next.
(i) Constant λΛ     
(ii) F is concave.
2
(Theorem)
Sphere that has radius 2R in Ω       B2R
Sphere that has same center with B2and has radius σR in Ω      BσR
Amplitude of D2u     ampD2u
ampBσRD2u = supBσRD2u – infBσRD2u
0<σ<1
and e are constant that is determined by dimension m and .
ampBσRD2ue(ampBRD2u +  supB2R|D| + supB2R |D2| )
[Impression]
1 Meaning minimum is the smallest meaning unit of word. Refer to the reference #2 and 
#2′.
2 If meaning minimum of word  is expressed by BσR, it has finite amplitude in adequate 
domain.
[References 1 On meaning minimum]
#1 Holomorphic Meaning Theory / 10th for KARCEVSKIJ Sergej
#2 Word and Meaning Minimum
#2′ From Cell to Manifold
#3 Geometry of Word
[References 2 On generation of word]
#4 Growth of Word
#5 Generation Theorem
#6 Deep Fissure between Word and Sentence
#7 Tomita’s Fundamental Theorem
#8 Borchers’ Theorem
#9 Finiteness in Infinity on Language
#10 Properly Infinite
#11 Purely Infinite
[References 3 on distance and mirror on word]
#12 Distance Theory / Tokyo May 5, 2004 / Sekian Linguistic Field
#13 Quantification of Quantum / Tokyo May 29, 2004 / Sekinan Linguistic Field
#14 Mirror Theory / Tokyo June 5, 2004 / Sekinan Linguistic Field
#15 Mirror Language / Tokyo June 10, 2004 / Sekinan Linguistic Field
#16 Reversion Theory / Tokyo September 27, 2004 / Sekinan Linguistic Field
#17 Mirror Theory Group / Tokyo December 9, 2008 / Sekinan Linguistic Field
To be continued
Tokyo December 17, 2008
Sekinan Research Field of language
[References 4 / December 23, 2008 / on time of word]
#18 Time of Word / Tokyo December 23, 2008 / sekinan.wiki.zoho.com

Homology Structure of Word​

Leave a comment [Edit]
Floer Homology Language 
TANAKA Akio 
     
 
Note6 
 
Homology Structure of Word
§ 1
1
Compact manifold in small diameter      M
Inner product space     h (M)
Map      h (Mk→  h (M)     
2
A model and B model by Witten, E.
A model     M as symplectic structure
B model     M as complex structure  
3
(A model)
(Definition)
kA (M) = H k(M;C)
*A (M) = kA (M
Inner product <. , .>A     <uv>A =      (  ; cup product)
mA, 02(uv) = 
4
(Theorem)
*A (M), mA, 02, <. , .>A ) is Frobenius algebra.
5
Oriented  2-dimensional manifold with genus g     Σg
6
J (Σg) = {JΣg | Smooth complex structure over Σg }
Integer over 0     k
Different k-number points over Σg     z1, …, zk     (Gathered points are expressed by . )
Diff (Σg) = {ψ : Σg → Σg | ψ() = ψ is differential homeomorphism. }
Quotient space      g,k J (Σg) / Diff (Σg
Rieman surface of genus g with k marked points     (Σ
(Σg,k 
Autmorphism group     Aut (Σ= { ψ : Σ → Σ | ψ is biregular.ψ() = }
Compactification of  g,k      CM g,k 
§2
Symplectic manifold    M
Differential 2-form over M     wM
Well-formed almost complex structure with wM     JM
βH2(MZ)
 (is pseudoholomorphic.)
(Σ,φ) 
2
[(Σ,φ)] 
Evaluation map     ev[(Σ,φ)]=
3
Forgetting map    fg : 
Enlarged Forgetting map    fg : 
3
(Definition)
(Gromov-Witten invariant)
(ev, fg)*
Gromov-Witten invariant is expressed by GWg,k(M, wMβ)
4
(Theorem)
Sumset    is compact.
5
(Associative law)
(Theorem)
[Image]
Meaning minimum of word is identified with .
Word is identified with 
Commutativity of meaning minimums in word guaranteed by theorem of associative law. 
[References]
Homology on Language / Symmetry Flow Language / Tokyo May 15, 2007
From Cell to Manifold / Cell Theory / Tokyo June 2, 2007
Deep Fissure between Word and Sentence / Algebraic Linguistics / Linguistic Result / Tokyo 
September 10, 2007
Reversion Analysis Theory / Tokyo June 8, 2008
Reversion Analysis Theory 2 / Tokyo June 12, 2008
Holomorphic Meaning Theory 10th for KARCEVSKIJ Sergej / Tokyo June 15, 2008
Holomorphic Meaning Theory 11th for KARCEVSKIJ Sergej / Tokyo June 19, 2008
Word and Meaning minimum / Energy Distance Theory / Conjecture 1 / Tokyo September 
22, 2008
Geometry of Word / Energy Distance Theory /  Conjecture2 / Tokyo November 23, 2008
Amplitude of meaning minimum / Complex Manifold Deformation Theory / Conjecture A4 / 
Tokyo December 17, 2008
Tokyo June 16, 2009
Sekinan Research Field of Language
[Related Note / June 18, 2009]
Potential of Language / Floer Homology Language / June 18, 2009

Basis of the further study on language – Potential

Leave a comment [Edit]
Basis of the further study on language – Potential 
 
Floer Homology Language 
 
TANAKA Akio 
  
Note1 
Potential of Language 
   
¶ Prerequisite conditions 
Note 6 Homology structure of Word
  
(Definition) 
(Gromov-Witten potential)  
 
(Theorem) 
(Witten-Dijkggraaf-Verlinde-Verlinde equation)  
  
(Theorem) 
(Structure of Frobenius manifold) 
Symplectic manifold     (MwM
Poincaré duality     < . , . > 
Product     <V1 V2V3> = V1V2V3
(MwM) has structure of Frobenius manifold over convergent domain of Gromov-Witten potential. 
 
(Theorem) 
Mk,β (Q1, …, Qk) =  
 
N(β) expresses Gromov-Witten potential. 
 
  
[Image] 
When Mk,β (Q1, …, Qk) is identified with language, language has potential N(β). 
     
[Reference] 
Quantum Theory for language / Synopsis / Tokyo January 15, 2004 
 
First designed on   
Tokyo April 29, 2009 
 
Newly planned on further visibility  
Tokyo June 16, 2009  
Sekinan Research Field of Language 
 
[Note, 31 March 2015] 
This paper was first designed for energy of language. But at that time, I could not write 
the proper approach from the concept of energy by mathematical process. So I wrote 
the paper through the concept of potential. Probably energy is one of the most fundamental
factors on language.
In 2003 I wrote Quantum Theory for Language , before which I wrote the manuscript focusing 
the concept of quantum abstracted from the ideogram of classical Chinese written language. 
The last target of manuscript was energy and meaning of quantum that was the ultimate 
unit of language. 
Refer to the next. 
 

Preparation for the energy of language

Leave a comment [Edit]

Preparation for the energy of language

TANAKA Akio
The energy of language seems to be one of the most fundamental theme for the further step-up  study on language at the present for me. But the theme was hard to put on the mathematical description. Now I present some preparatory  papers written so far.
  1. Potential of Language / Floer Homology Language / 16 June 2009
  2. Homology structure of Word / Floer Homology Language / Tokyo June 16, 2009
  3. Amplitude of meaning minimum / Complex Manifold Deformation Theory / 17 December 2008
  4. Time of Word / Complex Manifold Deformation Theory / 23 December 2008
Tokyo
3 April 2015
Sekinan Library

How does the language models connect with natural language?

Leave a comment [Edit]

How does the language models connect with natural language?


Natural language contains many important factors theoretically abstracted in the long philological studies.
At the contrast the language models made by mathematical description are themselves have not any connections with natural language.
The models by mathematics, which is totally composed from a few premises, contains many theorems and their understructures.
In these underconstructures, natural language’s factors are resembled with mathematical factors.
At the result, some resemblances are compared between mathematical models and natural language.
From these works, some resemblances to language universals may be appeared in the factors of mathematical models modified by natural language.
7 April 2014
[5 May 2014 Reference added]
True-false problem of the Crete 
Tokyo
5 May 2014

Sekinan Research Field of Language        

No comments:

Post a Comment