Sunday 5 April 2020

Clifford Algebra Note 7 Creation Operator and Annihilation Operator. 2008


04/05/2016 20:55
 
Note 7
Creation Operator and Annihilation Operator
 
 
1
Manifold     M
Tangent vector bundle of M     TM
Vector field over M = Cross section of TM     X ∈ Γ(MTM )
Differential map      M1 → M2     TM→ TM2     * (V) ∈ T(x)M2   V ∈ TxM1
Frame bundle of TM     GL (TM)
dim n     GL (n)
Representation space of arbitrary representation ρ in GL (n)     E
Tensor bundle of M = Associated bundle      ε GL (TM) ×ρ E
Exterior algebra    Λ(Rn)*
Exterior differential bundle     ΛT*M GL (TM) ×ρ Λ(Rn)*
2
Space of cross section    Γ(M, ΛT*M )
Space of differential form    Ω(M)
Ωi(M) = Γ(M, ΛiT*M )
Exterior differential     d : Ω(M) →Ω+1 (M)
3
Vector space     V
 V
exterior product     v∧ : Λ→ ΛV
Vector field     X
Exterior operator     v ( X ) : Ω(M) →Ω+1 (M)
4
Vector space     V
Dual vector space of V     V*
α ∈ V*
Construction     ι(α) : Λ→ ΛV
Vector field     X
Construction operator    ι(X) : Ω(M) →Ω●-1 (M)
5
Complex vector space     V ⊗R C
Complex subspace of V ⊗R C     P
V ⊗R C  P ⊕ 
Inner product     Q
w ∈ P
ww ) = 0
P is Polarization of V ⊗R .
6
Real vector space    V
Linear automorphism of V     J
J= -1
J     Complex structure of V
7
P’s exterior algebra    ΛP
Spinor space    S =ΛP
Spinor module ( Complex Clifford module )     S = S+ ⊕ S-
Complex Clifford module     ) ⊗R C
) ⊗R C = End ( S ) = S+ ⊗ S-
8
From upper 2, 3 and 5, elements of P, called creation operator, create a particle and elements of , called annihilation operator, annihilate a particle.
 
[Note]
Creation operator and annihilation operator are corresponded with the next past work.
 
 


Read more: https://srfl-paper.webnode.com/news/clifford-algebra-note-7-creation-operator-and-annihilation-operator/

No comments:

Post a Comment