Wednesday, 23 April 2025

Energy Distance Theory Note 2 Heat and Diffusion

 Energy Distance Theory

 

Note 2

Heat and Diffusion

 

TANAKA Akio

 

 

1 Heat equation

Time     t

Situation     x

Temperature of s

2u / x2     (k ; constant)

 

2 High dimensional heat equation

 = ku     (k ; constant)

 is Laplacian.

 

3 Diffusion equation

Time     t

Situation     x

Density of minute particles

 = div ( ku )     (k ; constant)

 

4 Assumption of heat equation

Assumption     k = 1

 = u

 

5 Initial value problem

Space     Rn

Heat equation      = u

Initial time     = 0

Temperature distribution of initial time     u( x )

Transition of temperature distribution is expressed by the next.

Initial condition  = u  xR> 0 )

Initial value     x, 0 ) = u( x )  (xRn )

The upper two formulas are called initial value problem.

 

6 Delta function

(i) δ (x) = 0

(ii) dx = 1

 

7 Fundamental solution of initial value problem

Function     U ( xyt )

  = xU

limt0 U ( xyt ) =δ (x-y)

is Laplacian of variable x.

 

8 Probability density

Particle is situated by the next.

= 0, probability 1, point y

Probability density of the particle that has Brownian motion over x- axis, time and point x     U ( xyt )

 

9 Heat kernel

U ( xyt ) = K ( x-y)

Function x) is called heat kernel.

 

10 Hausdorff dimension

Arbitrary figure in space Rn     S

Sequence of n-dimensional sphere     B1B2B3, …    

S is covered by the sequence Bk that diameter is below δ.

HαδS ) : = inf diam ( Bk ) <δ (diam(Bk))α

HαS ) : = limk0 HαδS )

HαS ) is called figure S’s α dimensional Hausdorff outer measure.

 

To be continued

Tokyo September 15

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment