Friday, 25 April 2025

Holomorphic Meaning Theory 3 Continuity of Meaning 12th for KARCEVSKIJ Sergej

 Holomorphic Meaning Theory 3

 

Continuity of Meaning

12th for KARCEVSKIJ Sergej

 

TANAKA Akio

 

1

Set     X

Family of subsets of X     M

When M satisfies the next <1>(i)(ii)(iii), M is called σ-field.

<1>

(i) XØ M

(ii) aM  XAM

(iii) An(n=1, 2, …) n=1 AnM

XM ) is called measurable space.

Function over M     μ

When μ satisfies the next <2>(i)(ii)(iii), μ is called measure over measurable space ( XM ).

(i) μ (A)[0,]

(ii) μ (0) = 0

(iii) AnAAm = 0  (nm)

μ (n=1 An) = Σn=1 μ (A)

XM, μ ) is called measure space.

When measure space satisfies the next <3>(i), it is called complete measure space.

(i) AMμ (A) = 0  BA, μ (B) = 0

<2>(iii) is called complete additive or σ additive.

2

Measure space that is all the measure is 1 is called probability space.

Measure that all the measure is 1 is called probability measure.

3

Set     Ω that is called whole possibility

Element of Ω     ω that is called sample point

σ-field      F

Element of F     that is called event

Function over F   P 

Measure for AF     () that is called probability      

4

 

 

Tokyo June 22, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment