Wednesday, 23 April 2025

Energy Distance Theory Note 1 Energy and Distance

  

Energy Distance Theory

 

Note 1

Energy and Distance

 

TANAKA Akio

 

 

1

Curve in 3-dimensional Euclidian space     : [0, 1]  R3

Longitude of l     L ( ) = dt

2

Surface     S

Curve combines A and B in S     l

Coordinate of     φ : U  S

Coordinate of     x1x2

φ = (φ1, φ2, φ3 )

=φ ( x0 )

=φ x1 )

3

Curve in S     : [0, 1]  R3

Curve on U    x ( )

Ω(x0x1) = { l : [0, 1]  R(0 ) = x0l (1 ) = x}

x(t)Ω(x0x1)

l ( ) =φ ( ( t ) )

x ( 0 ) = x0

( 1 ) = x1

L ( ) = dt   dt

gij is Riemann metric.

4

Longitude is defined by the next.

L ( x, xˑ   dt

5

Energy is defined by the next.

E ( x, xˑ  = I,j gi,j (x(t))i(t)j(t)dt

6

2 E ( x, xˑ ≥ (L ( x, xˑ ) )2

7

Theorem

For xΩ(x0x1), the next two are equivalent.

(i) E takes minimum value at x.

(ii) L takes minimum value at x.

8

What longitude is the minimum in curve is equivalent what energy is the minimum in curve.

9

Longitude L is corresponded with distance in Distance Theory.

 

[References]

Distance Theory / Tokyo May 4, 2004

Property of Quantum / Tokyo May 21, 2004                        

Mirror Theory / Tokyo June 5, 2004

Mirror Language / Tokyo June 10, 2004

Guarantee of Language / Tokyo June 12, 2004

Reversion Theory / Tokyo September 27, 2004

 

Tokyo August 31, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment