Sunday, 3 May 2015

Linguistic Premise Premise of Algebraic Linguistics 2-4



 Premise of Algebraic Linguistics 2-4

    TANAKA Akio

32 <automorphism group>
Algebraic system     X
Automorphism     bijectional homomorphism from X to X
All the automorphism has productive composition.      Automorphism group     Expression is Aut ( X )

33 <operate>
Ring     R
Automorphism group     Aut ( X )
Homomorphism of group     G  Aut( R )
G operates R.
Homomorphism is surjection.       G separates R faithfully.

34 <normal separable extension>
Finite group G operates field L faithfully.
Invariant subfield of L     k = LG := { a  L | σa ) = a ( σ  G )
Normal separable extension ( Galois extension )     [ L : k ] = | G |

35 <finite separable normal extension i.e. Galois extension>
Galois extension of L/k      G = Gal ( L/k )
Subfield of G     H
Invariant subfield of H     LH = { a  L | σ ( a ) = a   σ  H }
Intermediate field of L/k     E    
){ σ  G | σ ( a ) = a   a  E }   

36 <fundamental theorem of Galois theory>
Extension field is controlled by group theory.
Field of characteristic 0     k
Finite Galois extension     K  k
Intermediate field of K  k      M
Galois group     Gal ( K/k )
Subgroup of Gal ( K/k )     H
Galois correspondence
(1) M φ Gal ( K/M )
(2) H ψ LH
Extension M  k     Gal ( K/M ) is normal subfield of Gal ( K/).
Isomorphism     Gal ( M/k )  Gal ( K/k ) / Gal ( K/M )

Tokyo September 22, 2007

No comments:

Post a Comment