Friday, 1 May 2015

Linguistic Note 7 Projective Space


7

Projective Space



1
Closed field     k
Affine space     An+1
Coordinates of affine space     ( X0X1, … , Xn )
Set that has not 0 in An+1     An+1 \ { 0, 0, … , 0 }
Two elements of the set     P = ( a0a1, … , an )        Q= ( b0b1, … , bn )
Element of k that is not 0     λ
( b0b1, … , bn ) = ( λa0, λa1, … , λan )  
P and Q are equivalent.     P ~ Q
Set of the equivalent class     Pn = An+1 \ {0} / ~
n-dimensional projective space    Pn
2
Polynomial ring that has n + 1 variant     = k | X0X1, … , Xn |
S’ homogeneous polynomial     T
Z () = { P  Pn | f ( P ) = 0 }
Z () = { P  Pn | f ( P ) = 0,  T }
Subset of P    X
X has set T that consists of S’ homogeneous polynomial.
X = Z ( T )
X is algebraic set.
3
Pn that has topology which is closed set of algebraic set.        Zariski topology
4
Irreducible algebraic set of Pn     Projective algebraic variety
f  S     degree   d   homogeneous polynomial
Z () is d degree hypersurface of Pn
[Note]
Surface on which quantum exists may be described by algebra, especially for Aurora Theory and Aurora Time Theory.
[References]

Tokyo July 26, 2007

No comments:

Post a Comment