Friday, 1 May 2015

Linguistic Note 10 Cohomology Group


10

Cohomology Group


    TANAKA Akio

Group     G
G-additive group     M
Natural number     n
Gn = { σ1, … , σn | σ G }
Cn = ( GM ) = { φ Gn  M | φ is map as set }
Co = ( GM ) = M
Against Cn = ( GM )
φ ψ ) ( σ ) = φ ( σ ) + φσ )       φ ψ  Cn      σ Cn  
Element of Cn = ( GM )     n- Cochain
Homomorphism      dn Cn  ( GM )   Cn+1 ( GM )    n ≥ 0
 d n+1dn  = 0
Zn  ( GM )  = Ker ( dn )   n ≥ 0
Bn  ( GM )  = Im ( dn-1 )  n ≥ 1
Element of Zn  ( GM ) is n-cosylcle.
Element of Bn  ( G)  is n-coboundary.
Bn  ( GM )   Zn  ( GM )
Cohomology group of M is below.
Hn  ( GM ) = Zn  ( GM ) / Bn  ( GM ) 
H0  ( GM ) = Z0  ( GM )

[Note]
Cohomology group may be helpful to the meaning of words and their variations.

[References]
Tokyo July 29 2007

No comments:

Post a Comment