Friday, 1 May 2015

Linguistic Note 13 Zariski Topology


13

Zariski Topology


     TANAKA Akio

1
Algebraically closed field     k
Positive integer     n
n-variable polynomial     f ( T1, …..,Tn )  k [ T1,…..,Tn ]
Ideal generated by equation system  f1,….., fs      I = ( f1, ….., fs )  k [ T1,     ,Tn ]
Residue ring     A = k [ T1,     ,Tn ] / I
All the prime ideals of A     Spec A
Affine algebraic scheme     X = ( Spec AA )
Dimension of X      dim X
0 ≦ dim ≦ n
I = { f1,….., f} = 0
A = k [ T1,     ,Tn ]
Affine algebraic scheme     An = ( Spec k [ T1,     ,Tn ], T1,     ,Tn ] )
n- dimension affine space     An
Quotient field of integral domain A     Q
Transcendence degree of Q(A)     dim X
Affine algebraic variant     X
2
Affine algebraic scheme     X = ( Spec AA )     Y = ( Spec BB)
Isomorphism of k-algebra     φ : B → A
Prime ideal     P  Spec A
Prime ideal of B     φ’ = φ-1 ( P )
Regular map from X to Y     Φ = ( φ’, φ )
Line on k     A1 = ( Spec k [T1], k [T2] )
Regular function on X     Regular map from X to A1
3
Affine algebraic scheme     X = ( Spec AA )
Element of Spec A     xy, …
Prime ideal of A     PxPy,…
u  A
Subset of Spec A     u )
Topology of Spec A     Zariski topology
Topological space that has arbitrary open subset gives quasi-compact.     Noetherian space

[Note]
Affine algebraic scheme or Zariski topology may be useful to describe language on the whole or symbolic world expressed by language.

Tokyo August 24, 2007

No comments:

Post a Comment