Friday, 1 May 2015

Linguistic Note 9 Homomorphism



9

Homomorphism


    TANAKA Akio

1
Ring     R
Map from R-additive group M to R-additive group N     φ M   N
Condition that φ is R-additive group’s homomorphism
Against arbitrary u M and arbitrary a  R
φ u + v ) =φ u ) +  φ v )
φ au ) = aφ u )
When φ is bijective homomorphism, φ is isomorphism and M and are isomorphic.
Isomorphic M and N      M  N
Against homomorphism     φ M   N
Kernel     Ker ( φ ) = { u  M |  φ u ) = 0 }
Image      Im ( φ ) = { φ u ) | u  M }
Cokernel (Quotient module)    Coker ( φ ) = N / Im ( φ )

2
Topological space     X
Arbitrary opened set     U
Commutative group     F ( U )
Two opened sets      V
Homomorphism τ UV F ( V )    F ( U )
When homomorphism τ’ s condition is below, {  F ( U ), τ UV } becomes commutative group’s presheaf on X.
F ( 0 ) = { 0 }
τUU  = idU  ( identity map)
U V W 
τUW  = τUV   τVW

3
Presheaf      FGH
Sequence of homomorphism     F  f   G   g   H
When Im f = Ker g is made up, sequence is called exact sequence of presheaf.

4
Topological space     X
Ring’s sheaf on X    OX   
Ringed space     ( XOX )
Structure sheaf        OX
Free sheaf     direct sum of structure sheaf       OX

5
Scheme    X
O–additive sheaf      F
Next condition makes F as quasi-coherent sheaf.
Arbitrary point P  X
P’s neighborhood     U  X
Free sheaf   OUΛ  → F|  0
Next additional condition makes as coherent sheaf.
X is algebraic scheme.
Λs are finite set.

6
Complex analytic space becomes coherent sheaf by upper (5)’s alike operation.

[Note]
Coherent sheaf of complex analytic space is helpful to the solution for the present problem of language’s model.  

[References]
Tokyo July 28 2007

No comments:

Post a Comment