Friday, 25 April 2025

Functional Analysis Note 1 Baire’s Category Theorem, Uniform Boundedness Theorem, Banach-Steinhaus Theorem, Open Mapping Theorem and Closed Graph Theorem

 Functional Analysis

 

Note 1

 

Baire’s Category Theorem, Uniform Boundedness Theorem, Banach-Steinhaus Theorem, Open Mapping Theorem and Closed Graph Theorem 

 

TANAKA Akio

 

[Baire’s Category Theorem]

Complete distance space     X

Countable closed sets of X     X1X2, …, Xn, …

n=1Xn X

At least one Xn has open sphere.

[Account]

Distance at X      (xy)

Assumption     Any Xn has not open sphere.

XX

Complementary set of X    XCis open set that is not null.

XChas open sphere.

X2 has not open sphere S.

XC (x1ε1/2) Ø

Sequence of open sphere    {S(xnεn)}

For natural number n>m, {xn} is Cauchy sequence.

X is complete.

Arbitrary natural number that is convergent at point xX     m

 (xn, x)  0  (n∞)

Existence m’ that is d (xmx)<εm/2

m’>m

∉ Xm (m = 1, 2,…)

x  m=1Xm

The result is against m=1 XmX.

 

[Uniform Boundedness Theorem]

Infinity set     A

Bounded linear operator from Banach space X to norm space Y     TaaA

xX

supaA ||Tax|| < ∞  supaA ||Tax|| < ∞

[Account]

Natural number     n

Xn = {xX ; supaA ||Tax|| n}

{xX ; supaA ||Tax|| n}     Closed set

Xn     Open set

X     Complete

At least one of Xn ( n=1, 2, …) has open sphere by Baire’s category theorem.

Open sphere to be had     S ( x0r ) = { xX ; || x – x0 || < r }  ( r > 0 )

xS ( x0r ) →  ||Tax|| n0 ( a)

|| Tax0 ||4n0/r || x || ( xX, x0 )

 

[Banach-Steinhaus Theorem]

Bounded linear operator’s sequence from Banach space X to Banach space Y     Tn (n = 1, 2, …)

Dense subset of X     X0

Supn || Tnx || <  and for xX0, there exists limn→∞Tnx, next are concluded.

(i) For all of xX, there exists limn→∞Tn

(ii) When Tx = limn→∞TxX, ) , T is bounded linear operator from to Y, || T || limn→∞inf ||Tn|| is concluded.

[Account]

(i)

By uniform boundedness theorem, there exists constant M ( >0 ),

||Tn || M ( = 1,2,…)

xX, ε>0

yX0

|x-y| <ε/3M

Adequate natural number     n0

|Tny – Tmy| <ε/3 (n, mn)

|Tn– Tmx| <ε

{ Tnx} is Cauchy sequence ay Y.

Y is complete, there exists limn→∞Tn .

(ii)

supn||Tax|| < ∞

By uniform boundedness theorem, || Tnx || is bounded sequence.

||Tx|| = limn→∞||Tn x||(limn→∞inf||Tn|| )||x||  (xX)

 

[Open Mapping Theorem]

Banach space     XY

Upper bounded linear operator from to Y     T

Map of X’s arbitrary open set G by T     TG

TG is open set of Y.

[Account]

<1>

Arbitrary ρ>0

TSx(0, ρ Sphere Sr(0, ρ’) (ρ’>0)

Yn =   ( = 1,2,…)

SY(0,/ 2n0TSx(0, 1)

TSx(0,ρ S(0, ρ’)

<2>

Open set of X      

xG  

GOpen sphere Sx(xρ ) ( ρ >0 )

TG ⊃ Sr(Txρ’)

 

[Closed Graph Theorem]

Banach space     XY

Closed Operator     T

D(T)X,  R(T)Y

When D(T) = X, T is bounded.

[Account]

Graph G(T) is closed linear subspace.

Operator from G(T) to X     J

||J([xTx])||  ||[x, Tx]||

Bounded linear operator from to G(T)     -1

Adequate constant     > 0

||x|| + ||Tx|| = ||[xTx]|| = ||-1x||c||x|| (xX)

||Tx||c||x|| (xX)

 

Tokyo May 9, 2008

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment