Wednesday, 23 April 2025

Distance Theory Algebraically Supplemented 3 Point Preparatory consideration

 Distance Theory Algebraically Supplemented

3

Point Preparatory consideration

 

TANAKA Akio

 

1

<Homeomorphism>

Continuous map     X  Y

Inverse continuous map      f -1 : Y  X

f ( or f -1 ) is homeomorphism.

X and Y are homeomorphic.

2

<Homotopy>

Two topological space     XY

Continuous map    fi X    ( = 0,1)

Family of continuous maps      ft X  Y    t[0,1] )

Existence of maps is homotopic.

Expression is f0  f1

ft[ 0,1] ) is homotopy.

3

<Homotopy equivalent>

Two topological space     XY

Continuous map    X  Y  g X  Y

Composition     X  X   Y  Y

Homotopy     ≅ Id X   ≅ IdY

4

<Topological pair>

Topological space     X

Topological subspace     A

Topological pair     ( X)

5

<Attaching space>

Two topological space     XY

XY = Ø

XAYB

Homeomorphism (and attaching map) BA

Attaching space    XhY

6

<Cell complex>

n-dimensional disk     Dn   (n1)

n-dimensional sphere     Sn-1  (n1)

Dn = Sn-1

i-dimensional disk     Di

Inside of Di     Di ∂Di Di – Sn-1

Homeomorphism at inside of Di    cell    (0i1)  Expression is ei.

Closed cell of ei     ēi    

ēi ēi ei

Topological space     X

Sum of cells     X= ē01ē0m

Attaching map     h1 : X(1)  X0    

Attaching space     X1:= X0h1 X(1)

XXn-1hn X(n)

X = Xn

X is n-dimensional cell complex (or cell complex).

7

<Homotopy>

Topological space     X 

Subspace A that has only a point     x0     xis called base point.)

Topological space pair     ( Xx)

Homotopy set     [ (InIn), ( Xx) ]     n; natural number

The set is group.

n-dimensional sphere     Sn

A base point on Sn     x0

Topological space pair     (Sn, x0)

Isomorphism      [ (InIn), ( Xx) ]  [ (Sn, x0), ( Xx) ]

Arbitrary two points in X     x0x1

Natural number     n

Isomorphism      [ (InIn), ( Xx) ]  [ (InIn), ( Xx1) ]

(InIn), ( Xx) ] that is entered group structure is called 1-dimensional homotopy group     π1 ( Xx)

π1 ( Xx) is called fundamental group.

π1 ( Xx { 1 } is called simply connected.

n-dimensional homotopy group is commutative group.

Two topological space pairs ( Xx), ( Yy) are homotopy equivalent.

Isomorphism    πn ( Xxπn ( Yy)

Arbitrary two points in X     x0x1

Isomorphism     h : ( Xx ( Xx)

Homotopy equivalent

Isomorphism πn( Xx ( Xx)

8

<Convex set>

Vector space over real number field     X

KX

Arbitrary points in K     xy

K is convex set when what x and y make line segment is contained in K.

9

<Simplex>

(n+1) points in space Rn     p0, …, pn

Minimal vertex set     σn = ( p0, …, p) is called n-simplex. n is dimension ofσn.

Face ofσn     j-simplexσj = ( p01, …, pnj )

Boundary ofσn     all the simplexes less or equal (n-1) dimensions     Expression is ∂σn.

10

<Simplicial complex>

Simplex in Rn     σn

Set of simplexes     S = {σn }

S satisfied by next conditions is Simplicial complex.

(1) σnS  all the faces ofσnS

(2) σm1,σn2S →σm1⋂σn2 is face ofσm1 and σn2.

11

<Polyhedron>

Topological space that consists of sum of all the simplexes

12

<Triangulation>

Topological space     X

Simplicial complex     K

Polyhedron of K     | K |

Making K that is homeomorphic between | K | and X is triangulation.

Topological space is regarded as simplicial complex.

13

<Simplicial complex homology group>

Simplicial complexes makes simplicial complex homology group by definition of equivalent relation.

14

<Subdivision>

From Simplicial complex, composed simplexes are divided to smaller simplexes.

15

<Simplicial map>

By subdivision, continuous map from simplicial complexes to another one can be approximated by simplicial approximation theorem.

16

<Simplicial approximation theorem>

Topological space     X

Simplicial complex     K

Polyhedron of K    | K |

Homeomorphic map     : | K |  X

Triangulation     T = ( K)

Topological space     X1X2

Triangulation      T 1= ( K1t1 )     T 2= ( K2t2 )

Simplicial map     f : X1  X2

Simplicial map on T1T2     φX1  X2

Point     xX1

φ (x)simplex of T2

φ is smplicial approximation of f.

Existence of φ is called simplicial approximation theorem.

17

<Dimension axiom of homology group>

Topological space pair      ( XA )

Commutative group     hXA )  (p = 0,1,2,…)

Topological space being consisted of a point pt  when p1   hp (pt) = 0

18

<CW complex>

Cell complex     X

When X satisfies next two conditions, is CW complex.

(1) Closed cell ē of X’s cell is contained in sum-set of finite cells. The closed cell is called <closure finite>.

(2) Subset of X    U

Toward cell of X, when U  ē is open set of eU is only open set at the time. This situation is called <weak topology>.

CW complex is locally contractible in paracompact normal space.

19

<Locally contractible>

Paracompact is that locally finite is given by adequate <refinement> toward arbitrary open covering in topological space.

Normal space is satisfies T2 (Fréchet separation axiom) and T( Tietze separation axiom) in topological space.

Topological space     X

A point of X     p

Arbitrary neighborhood of p     U

Open neighborhood of p     V

VU

Toward U, there exists that inclusion map i :  and Constant map care homotopic.

From Hausdorff space ( topological T2 space ) to complex ( especially CW complex ), bridge is algebraically built by approach between space and a point.

 

 

Tokyo October 12, 2007

 

Sekinan Research Field of Language

 

www.sekinan.org

No comments:

Post a Comment