Wednesday, 23 April 2025

Distance Theory Algebraically Supplemented 1 Distance Preparatory consideration

 Distance Theory Algebraically Supplemented

 

1

Distance Preparatory consideration

 

TANAKA Akio

 

1 

Language is regarded as set X.

Product set     X×X

Map d from product set X×X to R+ = { xx0 } satisfies next 3conditions ( 3 axiom of distance).

(1) d (xy 0, d (xy) = 0  x = y

(2) d (xy) = d (yx)   <Symmetry> 

(3) d (xy d (xy) + d (yz)   <Triangle inequality>

d is called <distance function> or <metric function>.

Set ( X) is called< metric space>.

2

Set     X

Point of X     a

Plus real number    r

Set { xa) < r } is called <open ball> with radius r centered by a.     Expression is D ( a, r )

Word is regarded as open ball D.

3

Metric space     ( Xd )

Subset of X     A

Arbitrary point of     a

Open ball centered by a     DA

A is called <open set>.

All of As     U

satisfies next 3 conditions ( 3 axiom of open set ).

(1) 0, X U

(2) U1, …, Uk ⇒⋂k i=1 UU

(3) UαU , αΛ  αΛ U

U is called <topology> or <open set system> over X.

Set ( XU ) is called <topological space>.

Sentence is regarded as topological space.

4

Topological space ( X) defined by metric space ( Xd ) is <first axiom of countability>.

5

Topological space ( X) that is defined by metric space ( Xd ) is <Hausdorff space>.

[Note] Hausdorff separation axiom “ Toward two points xy, two neighborhoods Ux and Uy have existence never crossing each other.”

 

Tokyo October 8, 2007

Sekinan Research Field of Language

www.sekinan.org

No comments:

Post a Comment