Saturday, 26 April 2025

Linguistic Premise Premise of Algebraic Linguistics 3-1

 Linguistic Premise

 

 Premise of Algebraic Linguistics 3-1

 

    TANAKA Akio

 

1 <finitely generated>

Group     G

Subset of G     S

G is generated by finite set S.     G is finitely generated.

 

2 <ascending chain rule>

Commutative ring     A

Ideal of A   

Ascending chain of stops finitely.

The situation satisfies ascending chain rule.

 

3 <descending chain rule>

Commutative ring     A

Ideal of A   

Descending chain of stops finitely.

The situation satisfies descending chain rule.

 

 

4 <maximum element>

Set defined by order     X

Element of X     ax

x that is < x does not exist.

a is maximum element.

 

5 <minimum element>

Set defined by order     X

Element of X     bx

x that is > x does not exist.

b is minimum element.

 

 

4 <Noetherian ring>

Commutative ring A that satisfies next equivalent conditions is Noetherian ring.

(1) A satisfies ascending chain rule on ideal.

(2) Ideal family of A has maximum element.

(3) Ideal of A is finitely generated.

 

5 <Artinian  ring>

Commutative ring A that satisfies next equivalent conditions is Artininian ring.

(1) A satisfies descending chain rule on ideal.

(2) Ideal family of A has minimum element.

 

6 <module>

Additive group     M

Ring     A

M that has action of is A module.

M satisfies next conditions.

(1) a ( x + y ) = ax ay,     ( a + b ) x = ax + bx

(2) bx ) = ( ab ) x,     1x = x

 

7 <direct sum>

A module     MN

Structure of A module is given by set of product  M ×N. The situation is expressed by M  N.

Direct sum of n-M, i.e. M M ….M is expressed by Mn.

 

Tokyo September 23, 2007

Sekinan Research Field of Language

www.sekinan.org

Linguistic Premise Premise of Algebraic Linguistics 3

  


  

Linguistic Premise

 

 Premise of Algebraic Linguistics 3

 

    TANAKA Akio

 

15

Definition of <presheaf>

Topological space     X

Arbitrary opened set     UV    U V

Commutative group     F  U )

Homomorphism     τUV :  V )   ( U )

Given conditions

(1)

F  ( 0 ) = { 0 }

(2)

τUV  = id    (Identity map)

(3)

U  V  W     τUW  =τUV oτVV

Presheaf of commutative ring on X     { F ( U ), τUV }

 

16

Definition of <sheaf>

Presheaf F, G  on X

Homomorphism     ψ :  G

Given conditions

(1)

Arbitrary opened set     U

Homomorphism     φ ( U ) : F ( U )  G ( U )

(2)

Opened sets     V

Below makes commutative diagram.

F ( V ) , G ( V ), F ( U ) , G ( U )

φ ( V ), φ.( U )

τUV,

(3)

F  U )  s

Open covering U

U i }∈ I r UiU = 0   ∈    s = 0

(4)

Open covering U

U i }∈ I

F ( U ) ∋ si     ∈ I

rUi Uj Ui (si ) = r Ui Uj (sj) (i, j  )    rUiU (s) = si ( i  )

Presheaf is sheaf.

 

Tokyo September 17, 2007

Sekinan Research Field of Language

www.sekinan.org


  

Linguistic Premise Premise of Algebraic Linguistics 2-4

 Linguistic Premise

 

 Premise of Algebraic Linguistics 2-4

 

    TANAKA Akio

 

32 <automorphism group>

Algebraic system     X

Automorphism     bijectional homomorphism from X to X

All the automorphism has productive composition.      Automorphism group     Expression is Aut ( X )

 

33 <operate>

Ring     R

Automorphism group     Aut ( X )

Homomorphism of group     G  Aut( R )

G operates R.

Homomorphism is surjection.       G separates R faithfully.

 

34 <normal separable extension>

Finite group G operates field L faithfully.

Invariant subfield of L     k = LG := { a  L | σa ) = a ( σ  G )

Normal separable extension ( Galois extension )     [ L : k ] = | G |

 

35 <finite separable normal extension i.e. Galois extension>

Galois extension of L/k      G = Gal ( L/k )

Subfield of G     H

Invariant subfield of H     LH = { a  L | σ ( a ) = a   σ  H }

Intermediate field of L/k     E    

){ σ  G | σ ( a ) = a   a  E }   

 

36 <fundamental theorem of Galois theory>

Extension field is controlled by group theory.

Field of characteristic 0     k

Finite Galois extension     K  k

Intermediate field of K  k      M

Galois group     Gal ( K/k )

Subgroup of Gal ( K/k )     H

Galois correspondence

(1) M φ Gal ( K/M )

(2) H ψ LH

Extension M  k     Gal ( K/M ) is normal subfield of Gal ( K/).

Isomorphism     Gal ( M/k )  Gal ( K/k ) / Gal ( K/M )

 

Tokyo September 22, 2007

Sekinan Research Field of Language

www.sekinan.org

Linguistic Premise Premise of Algebraic Linguistics 2-3

 Linguistic Premise

 

 Premise of Algebraic Linguistics 2-3

 

    TANAKA Akio

 

25 <principal polynomial>

Commutative ring     R

Elements of R     a0a1, …, an

Variant    x

n-dimension polynomial over (with coefficient)     a0xn + a1xn-1 + … + an     degree( deg ) = n

Principal polynomial     Polynomial with maximum coefficient is 1.

Polynomial     f

Principal polynomial     g

f = qg + r    deg < deg g

 

26 <minimal polynomial>

Extension field     K/k

K’ element αis algebraic over k .    polynomial   0   k [ x ]     α ) = 0

What k-coefficient irreducible polynomial that has root α is minimal polynomial.

 

27 <separable extension>

Extension field     K/k

Arbitrary     α  K

Root of minimal polynomial over is separable.      K/is separable extension.

 

28 <intermediate field>

Finite extension field     K/k

What K/k is principal expansion is equivalent to what K/k ‘s intermediate field is finite.

[Proof outline]

K/k is principal extension.    (α)

α minimal polynomial over     X )

Intermediate field of K/k      L

K = (α)

α irreducible polynomial over L     g ( X )  L ( X )    L ( X )  is divided by f ( X ).

Expansion dimension [ K : L ] = deg g ( X )

Field that adds all the X ) ‘s coefficient to k     L’  L   g ) is irreducible at L’ ( X ).

[ K : L’ ] = deg g ( X ) = [ K : L ]    L = L

Arbitrary L

Expansion field     f ( X )

Factor    g ( X )

Coefficient of g ( )

The coefficient added to makes L.

f ( ) is finite.

Number of intermediate field is finite.

 

29 <Frobenius map>

Ring     A

p  A

p = 0

Map     F A      F ( ) = a p

F is Frobenius map of ring A.

 

29*

Frobenius map is homomorphism of ring.

[Proof outline]

From binomial theorem binomial coefficient is 0 in ring A.

b ) p = ap bp   ( a b ) q = aq bq

 

30 <perfect field>

Perfect field has only separable fields.

 

31 <Galois extension>

Finite extension field     L/k

Galois extension      L/is normal and separable.

 

Tokyo September 22, 2007

Sekinan Research Field of Language

www.sekinan.org

 

Linguistic Premise Premise of Algebraic Linguistics 2-2

  

Linguistic Premise

 

 Premise of Algebraic Linguistics 2-2

 

    TANAKA Akio

 

13 <extension field>

Field     K    K  k

Extension field      K

Subfield    k

Extension field is also expressed by K/k.

 

14 <extension dimension>

Extension field     K/k

Extension dimension     K dimension over k    expressed by [ K : k ]

n-dimension extension     [ K : k ] = n

 

15 <principal extension>

Field extension     K/k

α  K

Principal extension of k     Minimum field containing k and α     Expressed by k (α)

 

16 <transcendental and algebraic>

Field extension     K/k

Polynomial ring      k [ X ]

Homomorphism     φφα : k [ X ]  K φf ( X ) ) = f (α)

Ker (φ) = ( 0 )      α is transcendental over k.

Ker (φ ( 0 )    α is algebraic over k.

 

17 <irreducible polynomial and principal polynomial>

Ker (φ) = ( f ( X ) ) uniquely determines principal polynomial that is expressed by Irrk ( α ).

 

18 <algebraic extension>

Arbitrary element of is algebraic over kK/k is algebraic extension.

 

19 <chain rule of extension dimension>

Finite extension      K  L

] = [ L : ] [ K : k ]

 

20 <algebraically closed field and algebraic closure>

Field     Ω

Arbitrary not constant f  Ω   f ( α ) = 0 and αΩ

Ω is algebraic closure.

 

21 <root of f ( X )>

Extension field     K/k

Set of K’s k-isomorphism     Aut)

k ( α)

α’s irreducible polynomial     f ( X )

σ ∈ Aut) is determined by σ ( α ) that is root of f ( ).

| Aut) | = # {  K  | f ( ) = 0 }

 

22 <normal extension>

Finite extension field     K/k

All the roots of K’s irreducible polynomial against arbitrary element α has roots of K.     K/k is normal extension.

 

23 <splitting field>

Polynomial     f ( X )  k [ X ]

All the roots of ) adjoining to      splitting field over k

 

23*

K/k is normal extension.      K is f ( X )  k [ X ]’s splitting field over k.

 

24 <Galois group>

Splitting field of f  ]

Aut( ) is f’s Galois group. Expression is Gal ( f ).

 

Tokyo September 21, 2007

Sekinan Research Field of Language

www.sekinan.org