Thursday, 30 April 2015

Operator Algebra Self-adjoint and Symmetry


Note 3
Self-adjoint and Symmetry 



Hilbert space     HK
Operator from H to K     A
Domain of A    dom A
Graph of A     G ( A ) : = { x  Ax ; x  A }
Operators     AB
A  B : = G ( A )  G ( B )
Minimum of B containing A     Closure of A, described by Ā 
Now closure of dom A = H
Operator from H to H     Operator over H
x  H    <xAy> = <x’, y>
A*x
A* that is operator over H     A* is adjoint operator of A
When A  A*       A is symmetric operator.
When A = A*         A is self-adjoint operator.
When Ā = A**        A is essentially self-adjoint.

[References]



No comments:

Post a Comment