Sunday, 31 March 2024

National Minority Languages in China

 

National Minority Languages in China

 

 

Zhongguo Shaoshu Minzu Yuyan Jianzhi Congshu

 

Minzu Chubanshe


 

1 Buyi yu jianzhi    YU Cuirong edited    1980   

2 Dongbu yugu yu jianzhi    ZHAONA Situ edited    1981

3 Dulong yu jianzhi    SUN Hongkai edited    1982

4 Donsiang yu jianzhi    LIU Zhaoxiong edted    1981

5 Gelaoyu jianzhi    HE Jiashan edited   1983

6 Maonan yu jianzhi    LIANG MIin edited    1980

Menggu yu jianzhi    DAO Bu edited    1983

8 Li yu jianzhi    OUYANG Jueya  ZHENG Taiqing edited    1980

9 Pumi yu jianzhi    LU Shaozun edited    1983

10 Qiang yu jianzhi    SUN Hongkai edited    1981

11 Mulao yu jianzhi    WANG Jin  ZHENG Guoqiao edited    1980

12 Tai yu jianzhi    YU Cuirong  LUO Meizhen edited    1980

13 Tuzu yu jainzhi     ZHAONA Situ edited    1981

14 Wa yu jianzhi    Zhou Zhizhi  YAN Qixiang edited    1984

15 Yaozu yuyan jianzhi    MAO Zongwu  MENG Chaoji  ZHENG Zongze    edited    1982

 

       

 

Guojia minwei minzu wenti 5 zhong congshu zhi 1

Zhongguo Shaoshu Minzu Yuyan Jianzhi Congshu

 

Minzu Chubanshe

 

16 Achang yu jianzhi    DAI Qingxia  SUI Zhichao edited    1985

17 Bulang yu jianzhi    LI Daoyong  NIE Xiizhen  QIU Efeng edited    1986

18 Chaoxian yu jianzhi    XUAN Dewu  JIN Xiangyuan  ZHAO Xi edited    1985

19 Cuonamen yu jianzhi    LU Shaozun edited    1986

20 Deang yu jianzhi    CHEN Xiangmu WANG Jingliu LEI Yongliang edited   1986

21 Elunchun yu jianzhi    HU Zengyi edited    1986

22 Ewenke yu jianzhi    HU Zengyi  CHAO Ke edited    1986

23 Gaoshanzu yuyan jianzhi (Ameisi yu)     HE Rufen  ZENG Siqi  TIAn Zhongshan  LIN Dengxian edited    1986

24 Gaoshanzu yuyan jianzhi (Bunen yu)     HE Rufen  ZENG Siqi  LI Wensu  LIN Qingchun edited    1986

25 Gaoshanzu yuyan jianzhi (Peiwan yu)    CHEN Kang  MA rongsheng edited    1986

26 Heni yu jianzhi    LI Yongsui  WANG Ersong edited    1986

27 Hesake yu jianzhi    GENG Shimin  LI Zengxiang edited    1985

28 Heze yu jianzhi    AN Jun edited    1986

29 Jing yu jianzhi    OUYANG Jueya  CHENG Fang  YU Cuirong edited    1984

30 Jinuo yu jianzhi    GAI Xingzhi edited    1986

31 Keerkezi yu jianzhi    HU Shenhua edited    1986

32 Lahu yu jianzhi    CHANG Hongen  mainly edited

33 Lisu yu jianzhi     CHU Lin  MU Yuzhang  GAI Xingzhi edited    1986

34 Luoba zu yuyian jianzhi (Bengni-Bogaer yu)    OUYANG Jueya edited    1985

35 Naxi yu jianzhi    HE Jiren JIANG Zhu yi edited    1985  

36 Nu zu yuyan jianzhi (Nuban yu)    SUN Hongkai  LIU Lu edited    1986

37 Cangluo menba yu jianzhi    ZHANG Jichuan edited     1986

38 Sala yu    LIN Lianyu edited    1985

39 She yu jianzhi    MAO zongwu  MENG Chaoji edited    1986

40 Xibu yugu yu jianzhi    CHEN Zongzhen LEI Xuanchun edited    1985

41 Tajike yu jianzhi    GAO erjiang edited    1985

42Tayaer yu jianzhi     CHEN Zongzhen  YI Liqian edited    1986

43 Tujia yu jianzhi    TIAN Desheng  HE Tianzhen deng edited    1986

44 Weiwuer yu    ZHAO Xiangru  SHU Zhining edited    1985

45 Wuzubieke yu jianzhi   CHENG Shiliang  ABUTURE Heman edited    1987

46 Xibo yu jianzhi    LI Shulan  ZHONG Qian edited    1986

47 Yi yu jianzhi    CHEN Shilin  BIAN Shiming  LI Xiuqing dited    1985

 

 

 

TOKYO
December 31, 2004

Sekinan Research Field of Language



Read more: https://srfl-collection.webnode.com/news/national-minority-languages-in-china/



Read more: https://geometrization-language.webnode.page/news/national-minority-languages-in-china/

CHEN Donghai, my dearest Chinese language teacher in 1967-1968

 CHEN Donghai, my dearest Chinese language teacher in 1967-1968

TANAKA Akio 

CHEN Donghai taught me the Chinese conversation in 1967 and 1968.
He was age nearly 60s and I was just 20, how young I was.
Time flies so fast, oh half a century.
I now became 73 in this summer 2020.

He was the important adviser for making The Iwanami Chinese Dictionary that was the first alphabetically arranged Chinese dictionary in Japan.

I have the dear memory for him.
He ever heard JIngji, classical Chinese opera, in Beijing, that was for hearing not for seeing, so hear-opera people sat sideways toward the opera’s stage. He talked us such condition for hearing pleasantly.

CHEN Donghai, after all, taught us the Beijing’s supreme tradition on history and culture succeeding the glorious Qing dynasty.

My language study’s basis was constructed in those days being led by CHEN Donghai.

Tokyo
23 May 2012 Text first written
23 January 2017 Revised
22 August 2020 Revised
Sekinan Research Field of Language

Read more: https://srfl-collection.webnode.com/news/chen-donghai/



Read more: https://geometrization-language.webnode.page/news/chen-donghai-my-dearest-chinese-language-teacher-in-1967-1968/

ANIF THANKS Glitter of youth through philosophy and mathematics in 1970s

 

ANIF THANKS Glitter of youth through philosophy and mathematics in 1970s


RI Ko

In 1970s or in my age 20s there surely exists glitter of youth in my life, now I remember.
In those days, in Japan many fabulous magazines were successively published. EpistemeToshi(City)、Chugoku(China) and the likes. Especially I loved reading Episteme which had printed many philosophical or philological articles as the form of special issues concentrated important philosopher, thinker and writer. The chief editor of Episteme was NAKANO Mikitaka(1943-2007), probably one of the best editors in the latter half of the 20th century in Japan. The most impressive number was Ludwig Wittgenstein(1889-1951), probably in 1977. Also influenced from the issue of Kurt Gödel(1906-1978)who gave me the possibility of set theory.

In my life, Wittgenstein gave the big influence for thinking and writing style, never entering or approaching his essential philosophical themes. After millennium year when I started the regular writing on language universals, my writing style was resembling in his Tractatus Logico-Philosophicus. My paper written in 2003, Quantum Theory for Language shows a very imitative style to him. This tendency kept on for some time till I changed to adopt algebraic method for more clear description to the themes.

1970s was a relatively calm times after those university's revolution in the late 1960s in which I also compellingly rolled in. In those days I almost had been wandering between library and old book shops aiming my life-time true themes cowardly avoiding the turmoil of university and towns. Blaise Pascal(1623-1662)'s Pansees was my favourite one. One day at Kanda's Taiwan Chinese book shop Kaifu (Haifeng)Shoten(Shudian), I bought WANG Guowei(1877-1927)'s Guantangjilin that opened the new frontier for classical Chinese philology mainly streamed by "Small Study", traditional exegetics in China. Influenced WANG Guowei I wrote a paper titled On Time Property Inherent in Characters, 2003 by which I began the latter start of language study.

In 1970s, I had cherished a dream in which I wanted to use mathematical description and get the essential of language. But I had not any ability to proceed the study for it while I read at random several mathematical books. One day I found and bought the amount Nicolas Bourbaki(1935-)'s text books at old book shop in Kanda, Tokyo. They were hard to keep reading for my talent in those days. After all, the books were put aside the desk. The remaining in my mind was adoration to Bourbaki and their brilliant achievement. My return to Bourbaki was long after in 1990s when I again tried the pursuit of language having a clear vision to study language universals according to the Linguistic Circle of Prague, especially aiming to resolve the supposition presented by Sergej Karcevskij(1884-1955).

Turning round the past days, my way was always narrow and winding road. But it keeps till now not breaking off in any situations. The way was finely glittering in my youth days despite under the cloudy sky. Probably I have kept happily walking till now being assisted by many people especially at the field of language, mathematics and relevant studies.

At random now I remember the dear names from whom I never cannot hear their voices. HASEGAWA Hiroshi, CHEN Donghai Chinese languageKAJIMURA Hideki, CHO Shokichi Korean languageNatary Muravijova Russian languageONO Shinobu Chinese literatureMIIYAZAKI Kenzo, FURUTA Hiromu, KONDO Tadayoshi Japanese literatureANDO Tsuguo French poemSAEKI Shoichi HaikuIKEDA Hiroshi Japanese classical dramaSAITO Kohei sculptureYAMAGISHI Tokuhei bibliographyNISHI Junzo Chinese philosophyKAWASAKI Tsuneyuki BuddhismCHINO Eiichi Russian language, the Linguistic Circle of Prague. At last dear friend of high school days KANEKO Yutaka mathematics and our youth.
Tokyo
6 March 2015

For WITTGENSTEIN Ludwig Revised 2005-2014

 For WITTGENSTEIN0 Ludwig Revised

Position of Language

TANAKA Akio
                          
1  Quantization  is a cliff for consideration of language.
2 Mathematical interpretation of quantized language is now a first step to the theoretical ascent.
3 If there is not mathematics, next conjectures are impossible.
(i) Difference between word and sentence--- Commutative and noncommutative ring 
(ii) Continuation from word to sentence--- Tomita’s fundamental theorem 
(iii) Word’s finiteness and sentence’s infinity--- Property infinite  and  purely infinite 
(iv) Cyclic  structure of word’s meaning--- Infinite cyclic group 
4  Meaning minimum ,  mirror language  and  mirror symmetry  are inevitable approach to the study of language especially for  language universals .
5 Symplectic Language Theory, Floer Homology Language and Arithmetic Geometry Language are adopted as the model theory   for natural language in the recent.
6 Hereinafter the model theory will be entered to the new concept .  The Model  of Language Universals     will be shown by the description of mathematics .

[References]
0 .  WITTGENSTEIN Ludwig
Theory Dictionary Writing 
Theory Dictionary Person 
Aim for Frame-Quantum Theory 

1 .  Quantized Language
Quantization of Language /Floer Homology Language 
2 .  Meaning minimum
Structure of Meaning / Symplectic Language Theory 
3 .  Mirror language
Mirror Symmetry on Rational Curve / Symplectic Language Theory 
4 .  Mirror symmetry
Homology Mirror Symmetry Conjecture by KONTSEVICH / Symplectic Language Theory 
5 .  Language universals
Generating Function / Symplectic Language Theory 
6. Models of  Language Universals
Language Universal Models  

Tokyo December 10, 2005
Tokyo November 27, 2008 Revised
Tokyo March 24, 2009 Revised
Tokyo June 27, 2009 Revised
Tokyo February 28, 2011 Revised
Tokyo August 3, 2012 Revised
Tokyo December 8, 2014 Reprinted

[Comparison with First edition]
For WITTGENSTEIN Ludvig. First edition / 10 December 2005
Ludvig is incorrect at the first edition.

Presupposition on Natural Language

 Presupposition on Natural Language


TANAKA Akio
                                      
1.
Language is variable. If it be true, what is the base of variability?
2.
Language is pronounceable. If it be true, what is emerged by pronounced?
3.
Language is recordable. If it be true, what is emerged by recorded?
4.
Example.
An apple is variable and will be rotten by time proceeding.
An apple is pronounced at a glossary shop and will be bought by a home-maker.
An apple is recordable  and will be recorded in a photo.
5.
What distinguishes language from apple?
The answer is uncertain.
So I make the language models parting from natural language.


Reference

For WITTGENSTEIN Ludwig / Position of Language / 10 December 2005-3 August 2012

                                                              Tokyo
                                                       22 August 2012
                                       Sekinan Research Field of Language 


Read more: https://geometrization-language.webnode.page/products/presupposition-on-natural-language/

How the language models connect with natural language?

 

How the language models connect with natural language?


Natural language contains many important factors theoretically abstracted in the long philological studies.
At the contrast the language models made by mathematical description are themselves have not any connections with natural language.

The models by mathematics, which is totally composed from a few premises, contains many theorems and their understructures.
In these underconstructures, natural language's factors are resembled with mathematical factors.
At the result, some resemblances are compared between mathematical models and natural language.
From these works, some resemblances to language universals may be appeared in the factors of mathematical models modified by natural language.

7 April 2014

 

 

von Neumann Algebra 3 Note 1 Properly Infinite

 von Neumann Algebra 3


Note 1
Properly Infinite  

TANAKA Akio


[Theorem]
On von Neumann algebra N, next are equivalent.
(i) N is properly infinite.
(ii) There exist {En : nN}P(N) and En~InEn = I.
(iii)There exist EP(N) and E~E~I.

[Explanation]
<1 Objection Operator>
<1-1>
Hilbert space     H
Linear subspace of H     Subspace
Subspace that is closed by norm || || of H    Closed subspace
Arbitrary subspace of H         K
K: = {x; <xy> = 0, y K}     Orthogonal complement of K
Subspaces of H     KL
<xy> = 0 xK  yL     It is called that x and y are orthogonal each other. Notation is KL.
Direct sum KL : = {x+y ; xKyL}
<1-2>
xH
= dist(xK) : = inf{||x-y|| ; yK}
zK
d = ||x-z||
z : = PKx
PK is called objection operator from H to K.
<1-3>
von Neumann algebra     N
All of objection operators that belong to N     (N)
All of unitary operators that belong to N     U (N)

<2 Bounded operator>
<2-1>
Hilbert space      H, K
Subspace of H     D
Map    A
A(λx+μy) = λAx+μAyxyDλμC
A is called linear operator from H to K.
D     domain of A    Notation is dom A.
Set {Ax ; xD}     range of A    Notation is ran A.
<2-2>
dom A = H
Constant M>0
||Ax|M||x||  (xH)
A is called bounded operator from H to K
All of As     B(HK)
H = K
B(H:= B(H, H)
<2-3>
AB(H)
A*B(H)
<xAy> = <A*xy>
A* is called adjoint operator of A.
A*
A is called self-adjoint.
A*A = AA*
A is called normal operator.
A = A* = A2
A is called objection operator.
||Ax|| = ||x|| (xH)
A is called isometric operator.
A*A AA* I   I is identity operator.)
A is called unitary operator.
Ker A := {xH, Ax = 0}
A that is isometric over (Ker A) is called partial isometric operator.
<2-4>
von Neumann algebra     N
Commutant of N     N ‘
Center of N     Z := NN ‘      
Z = CI
N is called factor.
EP(N)
Central projection     E that belongs to Z    
All of central projections     P(Z)
<2-5>
Projection operator     EFP(N)
Partial isometric operator     WN
F1P(N)
F1F
E ~ F1
Situation is expressed by  F.
 gives P(Npartial order relation.

<3 Comparison theorem>
<3-1>
[Theorem]
For EFP(N), there exists PP(Z) , while EPFP and FPEP.

<4 Cardinality>
<4-1 Relation>
Sets     AB
xAyB
All of pairs <xy> between x and y are set that is called product set between a and b.
Subset of product set A×B     R
is called relation.
xAyB, <xy>R     Expression is xRy. 
When A =B, relation R is called binary relation over A.     
<4-2 Ordinal number>
Set     a
xy[xayxya]
a is called transitive.
xya
xy is binary relation.
When relation < satisfies next condition, < is called total order in strict sense.
xAyA[x<yx=yy<x]
When satisfies next condition, a is called ordinal number.
(i) a is transitive.
(ii) Binary relation over a is total order in strict sense.
<4-3 Cardinal number>
Ordinal number    α
α that is not equipotent to arbitrary β<α is called cardinal number.
<4-4 Cardinality>
Arbitrary set A is equipotent at least one ordinal number by well-ordering theorem and order isomorphism theorem.
The smallest ordinal number that is equipotent each other is cardinal number that is called cardinality over set A. Notation is |A|.
When |A| is infinite cardinal number, A is called infinite set.
<4-5 Countable set>
Set that is equipotent to N     countable infinite set
Set of which cardinarity is natural number     finite set
Addition of countable infinite set and finite set is called countable set.
<4-6 Zermelo’s well-ordering theorem>
If there exist Axiom of Choice, there exists well-ordering over arbitrary set.
<4-7 Order isomorphism theorem>
Arbitrary well-ordered set is order isomorphic to only one ordinal number.
<4-8 Axiom of choice>
xf Map(xx)∧∀y[yxy≠0 → f(y)y]]


To be continued
Tokyo May 1, 2008
Sekinan Research Field of Language
www.sekinan.org